
Live Systems Manual

Live Systems Project <debian-live@lists.debian.org>

2015-08-23

Live Systems Manual

Copyright © 2006-2015 Live Systems Project

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNUGeneral Public License can be found in /usr/share/common-
licenses/GPL-3 file.

SiSU git a

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual 1

Live Systems Project
<debian-live@lists.debian.org>

SiSU git 1

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual a

About 2

About this manual 3

About this manual 4
For the impatient

. 4
Terms

. 4
Authors

. 6
Contributing to this document

. 6
Applying changes

. 6
Translation

. 7

About the ${project} 9

About the ${project} 10
Motivation

. 10
What is wrong with current live systems

. 10
Why create our own live system?

. 10
Philosophy

. 10
Only unchanged packages from Debian ”main”

. 10
No package configuration of the live system

. 11
Contact

. 11

User 12

SiSU git i

https://sisudoc.org
https://git.sisudoc.org

Installation 13

Installation 14
Requirements

. 14
Installing live-build

. 14
From the Debian repository

. 14
From source

. 14
From ’snapshots’

. 15
Installing live-boot and live-config

. 15
From the Debian repository

. 15
From source

. 15
From ’snapshots’

. 16

The basics 17

The basics 18
What is a live system?

. 18
Downloading prebuilt images

. 19
Using the web live image builder

. 19
Web builder usage and caveats

. 19
First steps: building an ISO hybrid image

. 20
Using an ISO hybrid live image

. 20
Burning an ISO image to a physical medium

. 21
Copying an ISO hybrid image to a USB stick

. 21
Using the space left on a USB stick

. 21
Booting the live medium

. 22

SiSU git ii

https://sisudoc.org
https://git.sisudoc.org

Using a virtual machine for testing
. 22

Testing an ISO image with QEMU
. 23

Testing an ISO image with VirtualBox
. 23

Building and using an HDD image
. 24

Building a netboot image
. 24

DHCP server
. 25

TFTP server
. 26

NFS server
. 26

Netboot testing HowTo
. 27

Qemu
. 27

Webbooting
. 27

Getting the webboot files
. 27

Booting webboot images
. 28

Overview of tools 29

Overview of tools 30
The live-build package

. 30
The lb config command

. 30
The lb build command

. 31
The lb clean command

. 31
The live-boot package

. 31
The live-config package

. 32

SiSU git iii

https://sisudoc.org
https://git.sisudoc.org

Managing a configuration 33

Managing a configuration 34
Dealing with configuration changes

. 34
Why use auto scripts? What do they do?

. 34
Use example auto scripts

. 34
Clone a configuration published via Git

. 35

Customizing contents 37

Customization overview 38
Build time vs. boot time configuration

. 38
Stages of the build

. 38
Supplement lb config with files

. 39
Customization tasks

. 39

Customizing package installation 40

Customizing package installation 41
Package sources

. 41
Distribution, archive areas and mode

. 41
Distribution mirrors

. 42
Distribution mirrors used at build time

. 42
Distribution mirrors used at run time

. 42
Additional repositories

. 43
Choosing packages to install

. 43
Package lists

. 43

SiSU git iv

https://sisudoc.org
https://git.sisudoc.org

Using metapackages
. 44

Local package lists
. 44

Local binary package lists
. 45

Generated package lists
. 45

Using conditionals inside package lists
. 45

Removing packages at install time
. 46

Desktop and language tasks
. 46

Kernel flavour and version
. 47

Custom kernels
. 47

Installing modified or third-party packages
. 48

Using packages.chroot to install custom packages
. 48

Using an APT repository to install custom packages
. 49

Custom packages and APT
. 49

Configuring APT at build time
. 49

Choosing apt or aptitude
. 49

Using a proxy with APT
. 49

Tweaking APT to save space
. 50

Passing options to apt or aptitude
. 51

APT pinning
. 51

SiSU git v

https://sisudoc.org
https://git.sisudoc.org

Customizing contents 53

Customizing contents 54
Includes

. 54
Live/chroot local includes

. 54
Binary local includes

. 55
Hooks

. 55
Live/chroot local hooks

. 55
Boot-time hooks

. 55
Binary local hooks

. 56
Preseeding Debconf questions

. 56

Customizing run time behaviours 57

Customizing run time behaviours 58
Customizing the live user

. 58
Customizing locale and language

. 58
Persistence

. 60
The persistence.conf file

. 61
Using more than one persistence store

. 62
Using persistence with encryption

. 63

Customizing the binary image 65

Customizing the binary image 66
Bootloaders

. 66
ISO metadata

. 66

SiSU git vi

https://sisudoc.org
https://git.sisudoc.org

Customizing Debian Installer 68

Customizing Debian Installer 69
Types of Debian Installer

. 69
Customizing Debian Installer by preseeding

. 70
Customizing Debian Installer content

. 70

Project 71

Contributing to the project 72

Contributing to the project 73
Making changes

. 73

Reporting bugs 75

Reporting bugs 76
Known issues

. 76
Rebuild from scratch

. 76
Use up-to-date packages

. 76
Collect information

. 77
Isolate the failing case if possible

. 78
Use the correct package to report the bug against

. 78
At build time while bootstrapping

. 78
At build time while installing packages

. 78
At boot time

. 78
At run time

. 79
Do the research

. 79

SiSU git vii

https://sisudoc.org
https://git.sisudoc.org

Where to report bugs
. 79

Coding Style 80

Coding Style 81
Compatibility

. 81
Indenting

. 81
Wrapping

. 81
Variables

. 82
Miscellaneous

. 83

Procedures 84

Procedures 85
Major Releases

. 85
Point Releases

. 85
Last Point Release of a Debian Release

. 85
Point release announcement template

. 85

Git repositories 87

Git repositories 88
Handling multiple repositories

. 88

Examples 90

Examples 91

Examples 92
Using the examples

. 92

SiSU git viii

https://sisudoc.org
https://git.sisudoc.org

Tutorial 1: A default image
. 92

Tutorial 2: A web browser utility
. 93

Tutorial 3: A personalized image
. 93

First revision
. 94

Second revision
. 95

A VNC Kiosk Client
. 95

A base image for a 128MB USB key
. 96

A localized GNOME desktop and installer
. 97

Appendix 99

Style guide 100

Style guide 101
Guidelines for authors

. 101
Linguistic features

. 101
Procedures

. 103
Guidelines for translators

. 105
Translation hints

. 105

SiSU git ix

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

About 2

SiSU git 2

https://sisudoc.org
https://git.sisudoc.org

About this manual 3

SiSU git 3

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

About this manual 4

Thismanual serves as a single access point to all documentation related to the ${project} 5

and in particular applies to the software produced by the project for the Debian 9.0
”${stable}” release. An up-to-date version can always be found at ⌜ http://live-systems.org/ ⌟

While live-manual is primarily focused on helping you build a live system and not on 6

end-user topics, an end user may find some useful information in these sections: The
Basics covers downloading prebuilt images and preparing images to be booted from
media or the network, either using the web builder or running live-build directly on
your system. Customizing run time behaviours describes some options that may be
specified at the boot prompt, such as selecting a keyboard layout and locale, and using
persistence.

Some of the commands mentioned in the text must be executed with superuser priv- 7

ileges which can be obtained by becoming the root user via su or by using sudo. To
distinguish between commands which may be executed by an unprivileged user and
those requiring superuser privileges, commands are prepended by $ or # respectively.
This symbol is not a part of the command.

For the impatient 8

While we believe that everything in this manual is important to at least some of our 9

users, we realize it is a lot of material to cover and that you may wish to experience
early success using the software before delving into the details. Therefore, we suggest
reading in the following order.

First, read this chapter, About this manual, from the beginning and ending with the 10

Terms section. Next, skip to the three tutorials at the front of the Examples section
designed to teach you image building and customization basics. Read Using the exam-
ples first, followed by Tutorial 1: A default image, Tutorial 2: A web browser utility and
finally Tutorial 3: A personalized image. By the end of these tutorials, you will have a
taste of what can be done with live systems.

We encourage you to return tomore in-depth study of themanual, perhaps next reading 11

The basics, skimming or skipping Building a netboot image, and finishing by reading
the Customization overview and the chapters that follow it. By this point, we hope you
are thoroughly excited by what can be done with live systems and motivated to read
the rest of the manual, cover-to-cover.

Terms 12

Live system: An operating system that can boot without installation to a hard drive. 13

Live systems do not alter local operating system(s) or file(s) already installed on the
computer hard drive unless instructed to do so. Live systems are typically booted

SiSU git 4

http://live-systems.org/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

from media such as CDs, DVDs or USB sticks. Some may also boot over the network
(via netboot images, see Building a netboot image), and over the Internet (via the
boot parameter fetch=URL, see Webbooting).

Live medium: As distinct from live system, the live medium refers to the CD, DVD or 14

USB stick where the binary produced by live-build and used to boot the live system
is written. More broadly, the term also refers to any place where this binary resides
for the purposes of booting the live system, such as the location for the network boot
files.

${project}: The project which maintains, among others, the live-boot, live-build, 15

live-config, live-tools and live-manual packages.

Host system: The environment used to create the live system. 16

Target system: The environment used to run the live system. 17

live-boot: A collection of scripts used to boot live systems. 18

live-build: A collection of scripts used to build customized live systems. 19

live-config: A collection of scripts used to configure a live system during the boot 20

process.

live-tools: A collection of additional scripts used to perform useful tasks within a 21

running live system.

live-manual: This document is maintained in a package called live-manual. 22

Debian Installer (d-i): The official installation system for the Debian distribution. 23

Boot parameters: Parameters that can be entered at the bootloader prompt to 24

influence the kernel or live-config.

chroot: The chroot program, chroot(8), enables us to run different instances of the 25

GNU/Linux environment on a single system simultaneously without rebooting.

Binary image: A file containing the live system, such as live-image-i386.hybrid.iso 26

or live-image-i386.img.

Target distribution: The distribution upon which your live system will be based. 27

This can differ from the distribution of your host system.

stable/testing/unstable: The stable distribution, currently codenamed ${stable}, 28

contains the latest officially released distribution of Debian. The testing distribution,
temporarily codenamed ${testing}, is the staging area for the next stable release.
A major advantage of using this distribution is that it has more recent versions of
software relative to the stable release. The unstable distribution, permanently
codenamed sid, is where active development of Debian occurs. Generally, this dis-
tribution is run by developers and those who like to live on the edge. Throughout
the manual, we tend to use codenames for the releases, such as ${testing} or sid,
as that is what is supported by the tools themselves.

SiSU git 5

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Authors 29

A list of authors (in alphabetical order): 30

Ben Armstrong 31

Brendan Sleight 32

Carlos Zuferri 33

Chris Lamb 34

Daniel Baumann 35

Franklin Piat 36

Jonas Stein 37

Kai Hendry 38

Marco Amadori 39

Mathieu Geli 40

Matthias Kirschner 41

Richard Nelson 42

Trent W. Buck 43

Contributing to this document 44

This manual is intended as a community project and all proposals for improvements and 45

contributions are extremely welcome. Please see the section Contributing to the project
for detailed information on how to fetch the commit key and make good commits.

Applying changes 46

In order to make changes to the English manual you have to edit the right files in 47

manual/en/ but prior to the submission of your contribution, please preview your work.
To preview the live-manual, ensure the packages needed for building it are installed by
executing:

48

apt -get install make po4a ruby ruby -nokogiri sisu -complete

You may build the live-manual from the top level directory of your Git checkout by 49

executing:
50

$ make build

SiSU git 6

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Since it takes a while to build the manual in all supported languages, authors may find 51

it convenient to use one of the fast proofing shortcuts when reviewing the new docu-
mentation they have added to the English manual. Using PROOF=1 builds live-manual in
html format, but without the segmented html files, and using PROOF=2 builds live-manual
in pdf format, but only the A4 and letter portraits. That is why using either of the PROOF=
possibilities can save up a considerable amount of time, e.g:

52

$ make build PROOF =1

When proofing one of the translations it is possible to build only one language by 53

executing, e.g:
54

$ make build LANGUAGES=de

It is also possible to build by document type, e.g: 55

56

$ make build FORMATS=pdf

Or combine both, e.g: 57

58

$ make build LANGUAGES=de FORMATS=html

After revising your work and making sure that everything is fine, do not use make 59

commit unless you are updating translations in the commit, and in that case, do not
mix changes to the English manual and translations in the same commit, but use sep-
arate commits for each. See the Translation section for more details.

Translation 60

In order to translate live-manual, follow these steps depending on whether you are 61

starting a translation from scratch or continue working on an already existing one:

Start a new translation from scratch 62

Translate the about_manual.ssi.pot, about_project.ssi.pot and index.html.in.pot63

files in manual/pot/ to your languagewith your favourite editor (such as poedit)
and send the translated .po files to the mailing list to check their integrity.
live-manual’s integrity check not only ensures that the .po files are 100%
translated but it also detects possible errors.

Once checked, to enable a new language in the autobuild it is enough to add 64

the initial translated files to manual/po/${LANGUAGE}/ and run make commit. And
then, edit manual/_sisu/home/index.html adding the name of the language and
its name in English between brackets.

SiSU git 7

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Continue with an already started translation 65

If your target language has already been added, you can randomly con- 66

tinue translating the remaining .po files in manual/po/${LANGUAGE}/ using your
favourite editor (such as poedit).

Do not forget that you need to run make commit to ensure that the trans- 67

lated manuals are updated from the .po files and then you can review your
changes launching make build before git add ., git commit -m ”Translating...”
and git push. Remember that since make build can take a considerable
amount of time, you can proofread languages individually as explained in
Applying changes

After running make commit youwill see some text scroll by. These are basically informative 68

messages about the processing status and also some hints about what can be done
in order to improve live-manual. Unless you see a fatal error, you usually can proceed
and submit your contribution.

live-manual comes with two utilities that can greatly help translators to find untrans- 69

lated and changed strings. The first one is ”make translate”. It launches an script that
tells you in detail how many untranslated strings there are in each .po file. The second
one, the ”make fixfuzzy” target, only acts upon changed strings but it helps you to find
and fix them one by one.

Keep in mind that even though these utilities might be really helpful to do translation 70

work on the command line, the use of an specialized tool like poedit is the recom-
mended way to do the task. It is also a good idea to read the Debian localization (l10n)
documentation and, specifically to live-manual, the Guidelines for translators.

Note: You can use make clean to clean your git tree before pushing. This step is not 71

compulsory thanks to the .gitignore file but it is a good practice to avoid committing
files involuntarily.

SiSU git 8

https://sisudoc.org
https://git.sisudoc.org

About the ${project} 72

SiSU git 9

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

About the ${project} 73

Motivation 74

What is wrong with current live systems 75

When ${project} was initiated, there were already several Debian based live systems 76

available and they are doing a great job. From the Debian perspective most of them
have one or more of the following disadvantages:

They are not Debian projects and therefore lack support from within Debian. 77

They mix different distributions, e.g. testing and unstable. 78

They support i386 only. 79

They modify the behaviour and/or appearance of packages by stripping them down 80

to save space.

They include packages from outside of the Debian archive. 81

They ship custom kernels with additional patches that are not part of Debian. 82

They are large and slow due to their sheer size and thus not suitable for rescue 83

issues.

They are not available in different flavours, e.g. CDs, DVDs, USB-stick and netboot 84

images.

Why create our own live system? 85

Debian is the Universal Operating System: Debian has a live system to show around and 86

to accurately represent the Debian system with the following main advantages:

It is a subproject of Debian. 87

It reflects the (current) state of one distribution. 88

It runs on as many architectures as possible. 89

It consists of unchanged Debian packages only. 90

It does not contain any packages that are not in the Debian archive. 91

It uses an unaltered Debian kernel with no additional patches. 92

Philosophy 93

Only unchanged packages from Debian ”main” 94

We will only use packages from the Debian repository in the ”main” section. The non- 95

SiSU git 10

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

free section is not part of Debian and therefore cannot be used for official live system
images.

We will not change any packages. Whenever we need to change something, we will do 96

that in coordination with its package maintainer in Debian.

As an exception, our own packages such as live-boot, live-build or live-config may 97

temporarily be used from our own repository for development reasons (e.g. to create
development snapshots). They will be uploaded to Debian on a regular basis.

No package configuration of the live system 98

In this phase we will not ship or install sample or alternative configurations. All pack- 99

ages are used in their default configuration as they are after a regular installation of
Debian.

Whenever we need a different default configuration, we will do that in coordination 100

with its package maintainer in Debian.

A system for configuring packages is provided using debconf allowing custom config- 101

ured packages to be installed in your custom produced live system images, but for the
prebuilt live images we choose to leave packages in their default configuration, unless
absolutely necessary in order to work in the live environment. Wherever possible, we
prefer to adapt packages within the Debian archive to work better in a live system ver-
sus making changes to the live toolchain or prebuilt image configurations. For more
information, please see Customization overview.

Contact 102

Mailing list: The primary contact for the project is themailing list at ⌜ https://lists.debian.org/debian-live/ ⌟103

. You can email the list directly by addressing yourmail to debian-live@lists.debian.org.
The list archives are available at ⌜ https://lists.debian.org/debian-live/ ⌟ .

IRC: A number of users and developers are present in the #debian-live channel 104

on irc.debian.org (OFTC). When asking a question on IRC, please be patient for an
answer. If no answer is forthcoming, please email the mailing list.

BTS: The 105

⌜Debian Bug Tracking System ⌟ (BTS) contains details of bugs reported by users
and developers. Each bug is given a number, and is kept on file until it is marked as
having been dealt with. For more information, please see Reporting bugs.

SiSU git 11

https://lists.debian.org/debian-live/
https://lists.debian.org/debian-live/
https://www.debian.org/Bugs/
https://sisudoc.org
https://git.sisudoc.org

User 106

SiSU git 12

https://sisudoc.org
https://git.sisudoc.org

Installation 107

SiSU git 13

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Installation 108

Requirements 109

Building live system images has very few system requirements: 110

Superuser (root) access 111

An up-to-date version of live-build 112

A POSIX-compliant shell, such as bash or dash 113

debootstrap 114

Linux 2.6 or newer. 115

Note that using Debian or a Debian-derived distribution is not required - live-build will 116

run on almost any distribution with the above requirements.

Installing live-build 117

You can install live-build in a number of different ways: 118

From the Debian repository 119

From source 120

From snapshots 121

If you are using Debian, the recommended way is to install live-build via the Debian 122

repository.

From the Debian repository 123

Simply install live-build like any other package: 124

125

apt -get install live -build

From source 126

live-build is developed using the Git version control system. On Debian based systems, 127

this is provided by the git package. To check out the latest code, execute:
128

$ git clone git ://live -systems.org/git/live -build.git

You can build and install your own Debian package by executing: 129

130

SiSU git 14

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

$ cd live -build
$ dpkg -buildpackage -b -uc -us
$ cd ..

Now install whichever of the freshly built .deb files you were interested in, e.g. 131

132

dpkg -i live -build_4 .0-1_all.deb

You can also install live-build directly to your system by executing: 133

134

make install

and uninstall it with: 135

136

make uninstall

From ’snapshots’ 137

If you do not wish to build or install live-build from source, you can use snapshots. These 138

are built automatically from the latest version in Git and are available on ⌜ http://live-systems.org/debian/ ⌟
.

Installing live-boot and live-config 139

Note: You do not need to install live-boot or live-config on your system to create 140

customized live systems. However, doing so will do no harm and is useful for reference
purposes. If you only want the documentation, you may now install the live-boot-doc
and live-config-doc packages separately.

From the Debian repository 141

Both live-boot and live-config are available from the Debian repository as per Installing 142

live-build.

From source 143

To use the latest source from git, you can follow the process below. Please ensure you 144

are familiar with the terms mentioned in Terms.

Checkout the live-boot and live-config sources 145

146

SiSU git 15

http://live-systems.org/debian/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

$ git clone git ://live -systems.org/git/live -boot.git
$ git clone git ://live -systems.org/git/live -config.git

Consult the live-boot and live-config man pages for details on customizing if that is 147

your reason for building these packages from source.

Build live-boot and live-config .deb files 148

You must build either on your target distribution or in a chroot containing your target 149

platform: this means if your target is ${testing} then you should build against ${test-
ing}.

Use a personal builder such as pbuilder or sbuild if you need to build live-boot for a 150

target distribution that differs from your build system. For example, for ${testing} live
images, build live-boot in a ${testing} chroot. If your target distribution happens to
match your build system distribution, you may build directly on the build system using
dpkg-buildpackage (provided by the dpkg-dev package):

151

$ cd live -boot
$ dpkg -buildpackage -b -uc -us
$ cd ../live -config
$ dpkg -buildpackage -b -uc -us

Use applicable generated .deb files 152

As live-boot and live-config are installed by live-build system, installing the packages 153

in the host system is not sufficient: you should treat the generated .deb files like any
other custom packages. Since your purpose for building from source is likely to test
new things over the short term before the official release, follow Installing modified or
third-party packages to temporarily include the relevant files in your configuration. In
particular, notice that both packages are divided into a generic part, a documentation
part and one or more back-ends. Include the generic part, only one back-end matching
your configuration, and optionally the documentation. Assuming you are building a
live image in the current directory and have generated all .deb files for a single version
of both packages in the directory above, these bash commands would copy all of the
relevant packages including default back-ends:

154

$ cp ../live -boot{_,-initramfs -tools ,-doc}*.deb config/packages.chroot/
$ cp ../live -config{_,-sysvinit ,-doc}*.deb config/packages.chroot/

From ’snapshots’ 155

You can let live-build automatically use the latest snapshots of live-boot and live-config 156

by configuring the package repository on live-systems.org as a third-party repository
in your live-build configuration directory.

SiSU git 16

https://sisudoc.org
https://git.sisudoc.org

The basics 157

SiSU git 17

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

The basics 158

This chapter contains a brief overview of the build process and instructions for using 159

the three most commonly used image types. The most versatile image type, iso-hybrid,
may be used on a virtual machine, optical medium or USB portable storage device. In
certain special cases, as explained later, the hdd type may be more suitable. The chap-
ter includes detailed instructions for building and using a netboot type image, which is a
bit more involved due to the setup required on the server. This is an slightly advanced
topic for anyone who is not already familiar with netbooting, but it is included here
because once the setup is done, it is a very convenient way to test and deploy images
for booting on the local network without the hassle of dealing with image media.

The section finishes with a quick introduction to webbooting which is, perhaps, the 160

easiest way of using different images for different purposes, switching from one to the
other as needed using the internet as a means.

Throughout the chapter, we will often refer to the default filenames produced by live- 161

build. If you are downloading a prebuilt image instead, the actual filenames may
vary.

What is a live system? 162

A live system usually means an operating system booted on a computer from a remov- 163

able medium, such as a CD-ROM or USB stick, or from a network, ready to use without
any installation on the usual drive(s), with auto-configuration done at run time (see
Terms).

With live systems, it’s an operating system, built for one of the supported architectures 164

(currently amd64 and i386). It is made from the following parts:

Linux kernel image, usually named vmlinuz* 165

Initial RAM disk image (initrd): a RAM disk set up for the Linux boot, containing 166

modules possibly needed to mount the System image and some scripts to do it.

System image: The operating system’s filesystem image. Usually, a SquashFS 167

compressed filesystem is used to minimize the live system image size. Note that it is
read-only. So, during boot the live system will use a RAM disk and ’union’ mechanism
to enable writing files within the running system. However, all modifications will be
lost upon shutdown unless optional persistence is used (see Persistence).

Bootloader: A small piece of code crafted to boot from the chosenmedium, possibly 168

presenting a prompt or menu to allow selection of options/configuration. It loads
the Linux kernel and its initrd to run with an associated system filesystem. Different
solutions can be used, depending on the target medium and format of the filesystem
containing the previously mentioned components: isolinux to boot from a CD or DVD
in ISO9660 format, syslinux for HDD or USB drive booting from a VFAT partition,
extlinux for ext2/3/4 and btrfs partitions, pxelinux for PXE netboot, GRUB for ext2/3/4
partitions, etc.

SiSU git 18

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

You can use live-build to build the system image from your specifications, set up a Linux 169

kernel, its initrd, and a bootloader to run them, all in one medium-dependant format
(ISO9660 image, disk image, etc.).

Downloading prebuilt images 170

While the focus of this manual is developing and building your own live images, you 171

may simply wish to try one of our prebuilt images, either as an introduction to their
use or instead of building your own. These images are built using our live-images
git repository and official stable releases are published at ⌜ https://www.debian.org/CD/live/ ⌟ .
In addition, older and upcoming releases, and unofficial images containing non-free
firmware and drivers are available at ⌜ http://live-systems.org/cdimage/release/ ⌟ .

Using the web live image builder 172

As a service to the community, we run a web-based live image builder service at 173

⌜ http://live-systems.org/build/ ⌟ . This site is maintained on a best effort basis. That is, al-
though we strive to keep it up-to-date and operational at all times, and do issue no-
tices for significant operational outages, we cannot guarantee 100% availability or fast
image building, and the service may occasionally have issues that take some time to
resolve. If you have problems or questions about the service, please contact us, pro-
viding us with the link to your build.

Web builder usage and caveats 174

The web interface currently makes no provision to prevent the use of invalid combina- 175

tions of options, and in particular, where changing an option would normally (i.e. using
live-build directly) change defaults of other options listed in the web form, the web
builder does not change these defaults. Most notably, if you change –architectures from
the default i386 to amd64, you must change the corresponding option –linux-flavours
from the default 586 to amd64. See the lb_config man page for the version of live-build
installed on the web builder for more details. The version number of live-build is listed
at the bottom of the web builder page.

The time estimate given by the web builder is a crude estimate only andmay not reflect 176

how long your build actually takes. Nor is the estimate updated once it is displayed.
Please be patient. Do not refresh the page you land on after submitting the build,
as this will resubmit a new build with the same parameters. You should contact us if
you don’t receive notification of your build only once you are certain you’ve waited
long enough and verified the notification e-mail did not get caught by your own e-mail
spam filter.

The web builder is limited in the kinds of images it can build. This keeps it simple and 177

efficient to use and maintain. If you would like to make customizations that are not

SiSU git 19

https://www.debian.org/CD/live/
http://live-systems.org/cdimage/release/
http://live-systems.org/build/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

provided for by the web interface, the rest of this manual explains how to build your
own images using live-build.

First steps: building an ISO hybrid image 178

Regardless of the image type, you will need to perform the same basic steps to build an 179

image each time. As a first example, create a build directory, change to that directory
and then execute the following sequence of live-build commands to create a basic ISO
hybrid image containing a default live system without X.org. It is suitable for burning
to CD or DVD media, and also to copy onto a USB stick.

The name of the working directory is absolutely up to you, but if you take a look at 180

the examples used throughout live-manual, it is a good idea to use a name that helps
you identify the image you are working with in each directory, especially if you are
working or experimenting with different image types. In this case you are going to
build a default system so let’s call it, for example, live-default.

181

$ mkdir live -default && cd live -default

Then, run the lb config command. This will create a ”config/” hierarchy in the current 182

directory for use by other commands:
183

$ lb config

No parameters are passed to these commands, so defaults for all of their various op- 184

tions will be used. See The lb config command for more details.

Now that the ”config/” hierarchy exists, build the imagewith the lb build command: 185

186

lb build

This process can take a while, depending on the speed of your computer and your 187

network connection. When it is complete, there should be a live-image-i386.hybrid.iso
image file, ready to use, in the current directory.

Note: If you are building on an amd64 system the name of the resulting image will 188

be live-image-amd64.hybrid.iso. Keep in mind this naming convention throughout the
manual.

Using an ISO hybrid live image 189

After either building or downloading an ISO hybrid image, which can be obtained at 190

⌜ https://www.debian.org/CD/live/ ⌟ , the usual next step is to prepare your medium for booting,
either CD-R(W) or DVD-R(W) optical media or a USB stick.

SiSU git 20

https://www.debian.org/CD/live/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Burning an ISO image to a physical medium 191

Burning an ISO image is easy. Just install xorriso and use it from the command-line to 192

burn the image. For instance:
193

apt -get install xorriso
$ xorriso -as cdrecord -v dev=/dev/sr0 blank=as_needed live -image -i386.hybrid.iso

Copying an ISO hybrid image to a USB stick 194

ISO images prepared with xorriso, can be simply copied to a USB stick with the cp 195

program or an equivalent. Plug in a USB stick with a size large enough for your image
file and determine which device it is, which we hereafter refer to as ${USBSTICK}. This
is the device file of your key, such as /dev/sdb, not a partition, such as /dev/sdb1! You
can find the right device name by looking in dmesg’s output after plugging in the stick,
or better yet, ls -l /dev/disk/by-id.

Once you are certain you have the correct device name, use the cp command to copy 196

the image to the stick. This will definitely overwrite any previous contents on
your stick!

197

$ cp live -image -i386.hybrid.iso ${USBSTICK}
$ sync

Note: The sync command is useful to ensure that all the data, which is stored in 198

memory by the kernel while copying the image, is written to the USB stick.

Using the space left on a USB stick 199

After copying the live-image-i386.hybrid.iso to a USB stick, the first partition on the 200

device will be filled up by the live system. To use the remaining free space, use a
partitioning tool such as gparted or parted to create a new partition on the stick.

201

gparted ${USBSTICK}

After the partition is created, where ${PARTITION} is the name of the partition, such 202

as /dev/sdb2, you have to create a filesystem on it. One possible choice would be
ext4.

203

mkfs.ext4 ${PARTITION}

SiSU git 21

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Note: If you want to use the extra space with Windows, apparently that OS cannot 204

normally access any partitions but the first. Some solutions to this problem have been
discussed on our mailing list, but it seems there are no easy answers.

Remember: Every time you install a new live-image-i386.hybrid.iso on the 205

stick, all data on the stick will be lost because the partition table is over-
written by the contents of the image, so back up your extra partition first to
restore again after updating the live image.

Booting the live medium 206

The first time you boot your live medium, whether CD, DVD, USB key, or PXE boot, 207

some setup in your computer’s BIOS may be needed first. Since BIOSes vary greatly
in features and key bindings, we cannot get into the topic in depth here. Some BIOSes
provide a key to bring up a menu of boot devices at boot time, which is the easiest way
if it is available on your system. Otherwise, you need to enter the BIOS configuration
menu and change the boot order to place the boot device for the live system before
your normal boot device.

Once you’ve booted the medium, you are presented with a boot menu. If you just press 208

enter here, the system will boot using the default entry, Live and default options. For
more information about boot options, see the ”help” entry in the menu and also the
live-boot and live-config man pages found within the live system.

Assuming you’ve selected Live and booted a default desktop live image, after the boot 209

messages scroll by, you should be automatically logged into the user account and see
a desktop, ready to use. If you have booted a console-only image, such as a standard
flavour prebuilt image, you should be automatically logged in on the console to the
user account and see a shell prompt, ready to use.

Using a virtual machine for testing 210

It can be a great time-saver for the development of live images to run them in a virtual 211

machine (VM). This is not without its caveats:

Running a VM requires enough RAM for both the guest OS and the host and a CPU 212

with hardware support for virtualization is recommended.

There are some inherent limitations to running on a VM, e.g. poor video performance, 213

limited choice of emulated hardware.

When developing for specific hardware, there is no substitute for running on the 214

hardware itself.

Occasionally there are bugs that relate only to running in a VM. When in doubt, test 215

your image directly on the hardware.

Provided you can work within these constraints, survey the available VM software and 216

choose one that is suitable for your needs.

SiSU git 22

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Testing an ISO image with QEMU 217

The most versatile VM in Debian is QEMU. If your processor has hardware support for 218

virtualization, use the qemu-kvm package; the qemu-kvm package description briefly
lists the requirements.

First, install qemu-kvm if your processor supports it. If not, install qemu, in which case 219

the program name is qemu instead of kvm in the following examples. The qemu-utils
package is also valuable for creating virtual disk images with qemu-img.

220

apt -get install qemu -kvm qemu -utils

Booting an ISO image is simple: 221

222

$ kvm -cdrom live -image -i386.hybrid.iso

See the man pages for more details. 223

Testing an ISO image with VirtualBox 224

In order to test the ISO with virtualbox: 225

226

apt -get install virtualbox virtualbox -qt virtualbox -dkms
$ virtualbox

Create a new virtual machine, change the storage settings to use live-image-i386.hybrid.iso227
as the CD/DVD device, and start the machine.

Note: For live systems containing X.org that you want to test with virtualbox, you 228

may wish to include the VirtualBox X.org driver package, virtualbox-guest-dkms and
virtualbox-guest-x11, in your live-build configuration. Otherwise, the resolution is lim-
ited to 800x600.

229

$ echo "virtualbox -guest -dkms virtualbox -guest -x11" >> config/package -lists/my.list.chroot

In order to make the dkms package work, also the kernel headers for the kernel flavour 230

used in your image need to be installed. Instead of manually listing the correct linux-
headers package in above created package list, the selection of the right package can
be done automatically by live-build.

231

$ lb config --linux -packages "linux -image linux -headers"

SiSU git 23

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Building and using an HDD image 232

Building an HDD image is similar to an ISO hybrid one in all respects except you specify 233

-b hdd and the resulting filename is live-image-i386.img which cannot be burnt to optical
media. It is suitable for booting from USB sticks, USB hard drives, and various other
portable storage devices. Normally, an ISO hybrid image can be used for this purpose
instead, but if you have a BIOS which does not handle hybrid images properly, you
need an HDD image.

Note: if you created an ISO hybrid image with the previous example, you will need 234

to clean up your working directory with the lb clean command (see The lb clean com-
mand):

235

lb clean --binary

Run the lb config command as before, except this time specifying the HDD image 236

type:
237

$ lb config -b hdd

Now build the image with the lb build command: 238

239

lb build

When the build finishes, a live-image-i386.img file should be present in the current 240

directory.

The generated binary image contains a VFAT partition and the syslinux bootloader, 241

ready to be directly written on a USB device. Once again, using an HDD image is just like
using an ISO hybrid one on USB. Follow the instructions in Using an ISO hybrid live im-
age, except use the filename live-image-i386.img instead of live-image-i386.hybrid.iso.

Likewise, to test an HDD image with Qemu, install qemu as described above in Testing 242

an ISO image with QEMU. Then run kvm or qemu, depending on which version your host
system needs, specifying live-image-i386.img as the first hard drive.

243

$ kvm -hda live -image -i386.img

Building a netboot image 244

The following sequence of commands will create a basic netboot image containing a 245

default live system without X.org. It is suitable for booting over the network.

Note: if you performed any previous examples, you will need to clean up your working 246

SiSU git 24

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

directory with the lb clean command:
247

lb clean

In this specific case, a lb clean –binary would not be enough to clean up the necessary 248

stages. The cause for this is that in netboot setups, a different initramfs configuration
needs to be used which live-build performs automatically when building netboot im-
ages. Since the initramfs creation belongs to the chroot stage, switching to netboot in
an existing build directory means to rebuild the chroot stage too. Therefore, lb clean
(which will remove the chroot stage, too) needs to be used.

Run the lb config command as follows to configure your image for netbooting: 249

250

$ lb config -b netboot --net -root -path "/srv/debian -live" --net -root -server "192.168.0.2"

In contrast with the ISO and HDD images, netbooting does not, itself, serve the filesys- 251

tem image to the client, so the files must be served via NFS. Different network filesys-
tems can be chosen through lb config. The –net-root-path and –net-root-server options
specify the location and server, respectively, of the NFS server where the filesystem
image will be located at boot time. Make sure these are set to suitable values for your
network and server.

Now build the image with the lb build command: 252

253

lb build

In a network boot, the client runs a small piece of software which usually resides on the 254

EPROM of the Ethernet card. This program sends a DHCP request to get an IP address
and information about what to do next. Typically, the next step is getting a higher level
bootloader via the TFTP protocol. That could be pxelinux, GRUB, or even boot directly
to an operating system like Linux.

For example, if you unpack the generated live-image-i386.netboot.tar archive in the 255

/srv/debian-live directory, you’ll find the filesystem image in live/filesystem.squashfs
and the kernel, initrd and pxelinux bootloader in tftpboot/.

We must now configure three services on the server to enable netbooting: the DHCP 256

server, the TFTP server and the NFS server.

DHCP server 257

We must configure our network’s DHCP server to be sure to give an IP address to the 258

netbooting client system, and to advertise the location of the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP server isc-dhcp-server in 259

SiSU git 25

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

the /etc/dhcp/dhcpd.conf configuration file:
260

/etc/dhcp/dhcpd.conf - configuration file for isc -dhcp -server

ddns -update -style none;

option domain -name "example.org";
option domain -name -servers ns1.example.org , ns2.example.org;

default -lease -time 600;
max -lease -time 7200;

log -facility local7;

subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.1 192.168.0.254;
filename "pxelinux .0";
next -server 192.168.0.2;
option subnet -mask 255.255.255.0;
option broadcast -address 192.168.0.255;
option routers 192.168.0.1;

}

TFTP server 261

This serves the kernel and initial ramdisk to the system at run time. 262

You should install the tftpd-hpa package. It can serve all files contained inside a root 263

directory, usually /srv/tftp. To let it serve files inside /srv/debian-live/tftpboot, run as
root the following command:

264

dpkg -reconfigure -plow tftpd -hpa

and fill in the new tftp server directory when being asked about it. 265

NFS server 266

Once the guest computer has downloaded and booted a Linux kernel and loaded its 267

initrd, it will try to mount the Live filesystem image through a NFS server.

You need to install the nfs-kernel-server package. 268

Then, make the filesystem image available through NFS by adding a line like the fol- 269

lowing to /etc/exports:
270

/srv/debian -live *(ro,async ,no_root_squash ,no_subtree_check)

and tell the NFS server about this new export with the following command: 271

272

SiSU git 26

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

exportfs -rv

Setting up these three services can be a little tricky. You might need some patience 273

to get all of them working together. For more information, see the syslinux wiki at
⌜ http://www.syslinux.org/wiki/index.php/PXELINUX ⌟ or the Debian Installer Manual’s TFTP Net Boot-
ing section at ⌜ http://d-i.alioth.debian.org/manual/en.i386/ch04s05.html ⌟ . They might help, as their
processes are very similar.

Netboot testing HowTo 274

Netboot image creation is made easy with live-build, but testing the images on physical 275

machines can be really time consuming.

To make our life easier, we can use virtualization. 276

Qemu 277

Install qemu, bridge-utils, sudo. 278

Edit /etc/qemu-ifup: 279

280

#!/ bin/sh
sudo -p "Password for $0:" /sbin/ifconfig $1 172.20.0.1
echo "Executing /etc/qemu -ifup"
echo "Bringing up $1 for bridged mode ..."
sudo /sbin/ifconfig $1 0.0.0.0 promisc up
echo "Adding $1 to br0 ..."
sudo /usr/sbin/brctl addif br0 $1
sleep 2

Get, or build a grub-floppy-netboot. 281

Launch qemu with ”-net nic,vlan=0 -net tap,vlan=0,ifname=tun0” 282

Webbooting 283

Webbooting is a convenient way of retrieving and booting live systems using the inter- 284

net as a means. The requirements for webbooting are very few. On the one hand, you
need a medium with a bootloader, an initial ramdisk and a kernel. On the other hand,
a web server to store the squashfs files which contain the filesystem.

Getting the webboot files 285

As usual, you can build the images yourself or use the prebuilt files, which are available 286

on the project’s homepage at ⌜ http://live-systems.org/ ⌟ . Using prebuilt images would be
handy for doing initial testing until one can fine tune their own needs. If you have built

SiSU git 27

http://www.syslinux.org/wiki/index.php/PXELINUX
http://d-i.alioth.debian.org/manual/en.i386/ch04s05.html
http://live-systems.org/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

a live image you will find the files needed for webbooting in the build directory under
binary/live/. The files are called vmlinuz, initrd.img and filesystem.squashfs.

It is also possible to extract those files from an already existing iso image. In order to 287

achieve that, loopback mount the image as follows:
288

mount -o loop image.iso /mnt

The files are to be found under the live/ directory. In this specific case, it would be 289

/mnt/live/. This method has the disadvantage that you need to be root to be able to
mount the image. However, it has the advantage that it is easily scriptable and thus,
easily automatized.

But undoubtedly, the easiest way of extracting the files from an iso image and upload- 290

ing it to the web server at the same time, is using the midnight commander or mc. If
you have the genisoimage package installed, the two-pane file manager allows you
to browse the contents of an iso file in one pane and upload the files via ftp in the
other pane. Even though this method requires manual work, it does not require root
privileges.

Booting webboot images 291

While some users will prefer virtualization to test webbooting, we refer to real hardware 292

here to match the following possible use case which should only be considered as an
example.

In order to boot a webboot image it is enough to have the components mentioned 293

above, i.e. vmlinuz and initrd.img in a usb stick inside a directory named live/ and in-
stall syslinux as bootloader. Then boot from the usb stick and type fetch=URL/PATH/TO/FILE
at the boot options. live-boot will retrieve the squashfs file and store it into ram. This
way, it is possible to use the downloaded compressed filesystem as a regular live sys-
tem. For example:

294

append boot=live components fetch=http ://192.168.2.50/ images/webboot/filesystem.squashfs

Use case: You have a web server in which you have stored two squashfs files, one 295

which contains a full desktop, like for example gnome, and a standard one. If you need
a graphical environment for one machine, you can plug your usb stick in and webboot
the gnome image. If you need one of the tools included in the second type of image,
perhaps for another machine, you can webboot the standard one.

SiSU git 28

https://sisudoc.org
https://git.sisudoc.org

Overview of tools 296

SiSU git 29

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Overview of tools 297

This chapter contains an overview of the three main tools used in building live systems: 298

live-build, live-boot and live-config.

The live-build package 299

live-build is a collection of scripts to build live systems. These scripts are also referred 300

to as ”commands”.

The idea behind live-build is to be a framework that uses a configuration directory to 301

completely automate and customize all aspects of building a Live image.

Many concepts are similar to those used to build Debian packages with debhelper: 302

The scripts have a central location for configuring their operation. In debhelper, 303

this is the debian/ subdirectory of a package tree. For example, dh_install will look,
among others, for a file called debian/install to determine which files should exist in
a particular binary package. In much the same way, live-build stores its configuration
entirely under a config/ subdirectory.

The scripts are independent - that is to say, it is always safe to run each command. 304

Unlike debhelper, live-build provides the tools to generate a skeleton configuration 305

directory. This could be considered to be similar to tools such as dh-make. For more
information about these tools, read on, since the remainder of this section discuses the
four most important commands. Note that the preceding lb is a generic wrapper for
live-build commands.

lb config: Responsible for initializing a Live system configuration directory. See The 306

lb config command for more information.

lb build: Responsible for starting a Live system build. See The lb build command 307

for more information.

lb clean: Responsible for removing parts of a Live system build. See The lb clean 308

command for more information.

The lb config command 309

As discussed in live-build, the scripts that make up live-build read their configuration 310

with the source command from a single directory named config/. As constructing this
directory by hand would be time-consuming and error-prone, the lb config command
can be used to create the initial skeleton configuration tree.

Issuing lb config without any arguments creates the config/ subdirectory which is pop- 311

ulated with some default settings in configuration files, and two skeleton trees named
auto/ and local/.

312

SiSU git 30

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

$ lb config
[2015 -01 -06 19:25:58] lb config
P: Creating config tree for a debian/stretch/i386 system
P: Symlinking hooks ...

Using lb config without any arguments would be suitable for users who need a very 313

basic image, or who intend to provide a more complete configuration via auto/config
later (see Managing a configuration for details).

Normally, you will want to specify some options. For example, to specify which package 314

manager to use while building the image:
315

$ lb config --apt aptitude

It is possible to specify many options, such as: 316

317

$ lb config --binary -images netboot --bootappend -live "boot=live components hostname=live -host ←↩
username=live -user" ...

A full list of options is available in the lb_config man page. 318

The lb build command 319

The lb build command reads in your configuration from the config/ directory. It then 320

runs the lower level commands needed to build your Live system.

The lb clean command 321

It is the job of the lb clean command to remove various parts of a build so subsequent 322

builds can start from a clean state. By default, chroot, binary and source stages are
cleaned, but the cache is left intact. Also, individual stages can be cleaned. For exam-
ple, if you have made changes that only affect the binary stage, use lb clean –binary
prior to building a new binary. If your changes invalidate the bootstrap and/or package
caches, e.g. changes to –mode, –architecture, or –bootstrap, you must use lb clean –purge.
See the lb_clean man page for a full list of options.

The live-boot package 323

live-boot is a collection of scripts providing hooks for the initramfs-tools, used to gen- 324

erate an initramfs capable of booting live systems, such as those created by live-build.
This includes the live system ISOs, netboot tarballs, and USB stick images.

At boot time it will look for read-only media containing a /live/ directory where a root 325

SiSU git 31

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

filesystem (often a compressed filesystem image like squashfs) is stored. If found, it will
create a writable environment, using aufs, for Debian like systems to boot from.

More information on initial ramfs in Debian can be found in the Debian Linux Kernel 326

Handbook at ⌜ http://kernel-handbook.alioth.debian.org/ ⌟ in the chapter on initramfs.

The live-config package 327

live-config consists of the scripts that run at boot time after live-boot to configure the 328

live system automatically. It handles such tasks as setting the hostname, locales and
timezone, creating the live user, inhibiting cron jobs and performing autologin of the
live user.

SiSU git 32

http://kernel-handbook.alioth.debian.org/
https://sisudoc.org
https://git.sisudoc.org

Managing a configuration 329

SiSU git 33

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Managing a configuration 330

This chapter explains how to manage a live configuration from initial creation, through 331

successive revisions and successive releases of both the live-build software and the
live image itself.

Dealing with configuration changes 332

Live configurations rarely are perfect on the first try. It may be fine to pass lb config 333

options from the command-line to perform a single build, but it is more typical to revise
those options and build again until you are satisfied. To support these changes, you will
need auto scripts which ensure your configuration is kept in a consistent state.

Why use auto scripts? What do they do? 334

The lb config command stores the options you pass to it in config/* files along with 335

many other options set to default values. If you run lb config again, it will not reset
any option that was defaulted based on your initial options. So, for example, if you
run lb config again with a new value for –binary-images, any dependent options that
were defaulted for the old image type may no longer work with the new ones. Nor are
these files intended to be read or edited. They store values for over a hundred options,
so nobody, let alone yourself, will be able to see in these which options you actually
specified. And finally, if you run lb config, then upgrade live-build and it happens to
rename an option, config/* would still contain variables named after the old option that
are no longer valid.

For all these reasons, auto/* scripts will make your life easier. They are simple wrap- 336

pers to the lb config, lb build and lb clean commands that are designed to help you
manage your configuration. The auto/config script stores your lb config command with
all desired options, the auto/clean script removes the files containing configuration vari-
able values, and the auto/build script keeps a build.log of each build. Each of these
scripts is run automatically every time you run the corresponding lb command. By
using these scripts, your configuration is easier to read and is kept internally consis-
tent from one revision to the next. Also, it will be much easier for you identify and fix
options which need to change when you upgrade live-build after reading the updated
documentation.

Use example auto scripts 337

For your convenience, live-build comes with example auto shell scripts to copy and 338

edit. Start a new, default configuration, then copy the examples into it:
339

$ mkdir mylive && cd mylive && lb config
$ mkdir auto

SiSU git 34

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

$ cp /usr/share/doc/live -build/examples/auto/* auto/

Edit auto/config, adding any options as you see fit. For instance: 340

341

#!/ bin/sh
lb config noauto \

--architectures i386 \
--linux -flavours 686-pae \
--binary -images hdd \
--mirror -bootstrap http ://ftp.ch.debian.org/debian/ \
--mirror -binary http ://ftp.ch.debian.org/debian/ \
"${@}"

Now, each time you use lb config, auto/config will reset the configuration based on 342

these options. When you want to make changes to them, edit the options in this file
instead of passing them to lb config. When you use lb clean, auto/clean will clean up
the config/* files along with any other build products. And finally, when you use lb
build, a log of the build will be written by auto/build in build.log.

Note: A special noauto parameter is used here to suppress another call to auto/config, 343

thereby preventing infinite recursion. Make sure you don’t accidentally remove it when
making edits. Also, take care to ensure when you split the lb config command across
multiple lines for readability, as shown in the example above, that you don’t forget the
backslash (
) at the end of each line that continues to the next.

Clone a configuration published via Git 344

Use the lb config –config option to clone a Git repository that contains a live system 345

configuration. If you would like to base your configuration on one maintained by the
${project}, look at ⌜ http://live-systems.org/gitweb/ ⌟ for the repository named live-images in
the category Packages. This repository contains the configurations for the live systems
prebuilt images.

For example, to build a standard image, use the live-images repository as follows: 346

347

$ mkdir live -images && cd live -images
$ lb config --config git://live -systems.org/git/live -images.git
$ cd images/standard

Edit auto/config and any other things you need in the config tree to suit your needs. For 348

example, the unofficial non-free prebuilt images aremade by simply adding –archive-areas
”main contrib non-free”.

You may optionally define a shortcut in your Git configuration by adding the following 349

to your ${HOME}/.gitconfig:
350

SiSU git 35

http://live-systems.org/gitweb/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

[url "git://live -systems.org/git/"]
insteadOf = lso:

This enables you to use lso: anywhere you need to specify the address of a live-systems.org351
git repository. If you also drop the optional .git suffix, starting a new image using this
configuration is as easy as:

352

$ lb config --config lso:live -images

Cloning the entire live-images repository pulls the configurations used for several im- 353

ages. If you feel like building a different image after you have finished with the first
one, change to another directory and again and optionally, make any changes to suit
your needs.

In any case, remember that every time you will have to build the image as superuser: 354

lb build

SiSU git 36

https://sisudoc.org
https://git.sisudoc.org

Customizing contents 355

SiSU git 37

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Customization overview 356

This chapter gives an overview of the various ways in which you may customize a live 357

system.

Build time vs. boot time configuration 358

Live system configuration options are divided into build-time options which are options 359

that are applied at build time and boot-time options which are applied at boot time.
Boot-time options are further divided into those occurring early in the boot, applied by
the live-boot package, and those that happen later in the boot, applied by live-config.
Any boot-time option may be modified by the user by specifying it at the boot prompt.
The image may also be built with default boot parameters so users can normally just
boot directly to the live system without specifying any options when all of the defaults
are suitable. In particular, the argument to lb –bootappend-live consists of any default
kernel command line options for the Live system, such as persistence, keyboard lay-
outs, or timezone. See Customizing locale and language, for example.

Build-time configuration options are described in the lb config man page. Boot-time 360

options are described in the man pages for live-boot and live-config. Although the live-
boot and live-config packages are installed within the live system you are building, it is
recommended that you also install them on your build system for easy reference when
you are working on your configuration. It is safe to do so, as none of the scripts con-
tained within them are executed unless the system is configured as a live system.

Stages of the build 361

The build process is divided into stages, with various customizations applied in se- 362

quence in each. The first stage to run is the bootstrap stage. This is the initial phase
of populating the chroot directory with packages to make a barebones Debian system.
This is followed by the chroot stage, which completes the construction of chroot direc-
tory, populating it with all of the packages listed in the configuration, along with any
other materials. Most customization of content occurs in this stage. The final stage of
preparing the live image is the binary stage, which builds a bootable image, using the
contents of the chroot directory to construct the root filesystem for the Live system,
and including the installer and any other additional material on the target medium out-
side of the Live system’s filesystem. After the live image is built, if enabled, the source
tarball is built in the source stage.

Within each of these stages, there is a particular sequence in which commands are 363

applied. These are arranged in such a way as to ensure customizations can be layered
in a reasonable fashion. For example, within the chroot stage, preseeds are applied
before any packages are installed, packages are installed before any locally included
files are copied, and hooks are run later, after all of the materials are in place.

SiSU git 38

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Supplement lb config with files 364

Although lb config creates a skeletal configuration in the config/ directory, to accom- 365

plish your goals, you may need to provide additional files in subdirectories of config/.
Depending on where the files are stored in the configuration, they may be copied into
the live system’s filesystem or into the binary image filesystem, or may provide build-
time configurations of the system that would be cumbersome to pass as command-line
options. You may include things such as custom lists of packages, custom artwork, or
hook scripts to run either at build time or at boot time, boosting the already consider-
able flexibility of debian-live with code of your own.

Customization tasks 366

The following chapters are organized by the kinds of customization task users typically 367

perform: Customizing package installation, Customizing contents and Customizing lo-
cale and language cover just a few of the things you might want to do.

SiSU git 39

https://sisudoc.org
https://git.sisudoc.org

Customizing package installation 368

SiSU git 40

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Customizing package installation 369

Perhaps the most basic customization of a live system is the selection of packages 370

to be included in the image. This chapter guides you through the various build-time
options to customize live-build’s installation of packages. The broadest choices influ-
encing which packages are available to install in the image are the distribution and
archive areas. To ensure decent download speeds, you should choose a nearby distri-
bution mirror. You can also add your own repositories for backports, experimental or
custom packages, or include packages directly as files. You can define lists of pack-
ages, including metapackages which will install many related packages at once, such
as packages for a particular desktop or language. Finally, a number of options give
some control over apt, or if you prefer, aptitude, at build time when packages are in-
stalled. You may find these handy if you use a proxy, want to disable installation of
recommended packages to save space, or need to control which versions of packages
are installed via APT pinning, to name a few possibilities.

Package sources 371

Distribution, archive areas and mode 372

The distribution you choose has the broadest impact on which packages are available 373

to include in your live image. Specify the codename, which defaults to ${testing} for
the ${testing} version of live-build. Any current distribution carried in the archive may
be specified by its codename here. (See Terms for more details.) The –distribution
option not only influences the source of packages within the archive, but also instructs
live-build to behave as needed to build each supported distribution. For example, to
build against the unstable release, sid, specify:

374

$ lb config --distribution sid

Within the distribution archive, archive areas are major divisions of the archive. In 375

Debian, these are main, contrib and non-free. Only main contains software that is part of
the Debian distribution, hence that is the default. One or more values may be specified,
e.g.

376

$ lb config --archive -areas "main contrib non -free"

Experimental support is available for some Debian derivatives through a –mode option. 377

By default, this option is set to debian only if you are building on a Debian or on an
unknown system. If lb config is invoked on any of the supported derivatives, it will
default to create an image of that derivative. If lb config is run in e.g. ubuntu mode,
the distribution names and archive areas for the specified derivative are supported
instead of the ones for Debian. The mode also modifies live-build behaviour to suit the
derivatives.

SiSU git 41

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Note: The projects for whom these modes were added are primarily responsible for 378

supporting users of these options. The ${project}, in turn, provides development sup-
port on a best-effort basis only, based on feedback from the derivative projects as we
do not develop or support these derivatives ourselves.

Distribution mirrors 379

The Debian archive is replicated across a large network of mirrors around the world so 380

that people in each region can choose a nearby mirror for best download speed. Each
of the –mirror-* options governs which distribution mirror is used at various stages
of the build. Recall from Stages of the build that the bootstrap stage is when the
chroot is initially populated by debootstrap with a minimal system, and the chroot
stage is when the chroot used to construct the live system’s filesystem is built. Thus,
the corresponding mirror switches are used for those stages, and later, in the binary
stage, the –mirror-binary and –mirror-binary-security values are used, superseding any
mirrors used in an earlier stage.

Distribution mirrors used at build time 381

To set the distribution mirrors used at build time to point at a local mirror, it is sufficient 382

to set –mirror-bootstrap and –mirror-chroot-security as follows.
383

$ lb config --mirror -bootstrap http :// localhost/debian/ \
--mirror -chroot -security http :// localhost/debian -security/

The chrootmirror, specified by –mirror-chroot, defaults to the –mirror-bootstrap value. 384

Distribution mirrors used at run time 385

The –mirror-binary* options govern the distribution mirrors placed in the binary image. 386

These may be used to install additional packages while running the live system. The
defaults employ httpredir.debian.org, a service that chooses a geographically close
mirror based, among other things, on the user’s IP family and the availability of the
mirrors. This is a suitable choice when you cannot predict which mirror will be best for
all of your users. Or you may specify your own values as shown in the example below.
An image built from this configuration would only be suitable for users on a network
where ”mirror” is reachable.

387

$ lb config --mirror -binary http :// mirror/debian/ \
--mirror -binary -security http :// mirror/debian -security/ \
--mirror -binary -backports http :// mirror/debian -backports/

SiSU git 42

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Additional repositories 388

You may add more repositories, broadening your package choices beyond what is avail- 389

able in your target distribution. Thesemay be, for example, for backports, experimental
or custom packages. To configure additional repositories, create config/archives/your-repository.list.chroot,
and/or config/archives/your-repository.list.binary files. As with the –mirror-* options,
these govern the repositories used in the chroot stage when building the image, and
in the binary stage, i.e. for use when running the live system.

For example, config/archives/live.list.chroot allows you to install packages from the 390

debian-live snapshot repository at live system build time.
391

deb http ://live -systems.org/ sid -snapshots main contrib non -free

If you add the same line to config/archives/live.list.binary, the repository will be added 392

to your live system’s /etc/apt/sources.list.d/ directory.

If such files exist, they will be picked up automatically. 393

You should also put the GPG key used to sign the repository into config/archives/your-repository.key.{binary,chroot}394

files.

Should you need custom APT pinning, such APT preferences snippets can be placed 395

in config/archives/your-repository.pref.{binary,chroot} files and will be automatically
added to your live system’s /etc/apt/preferences.d/ directory.

Choosing packages to install 396

There are a number of ways to choose which packages live-build will install in your 397

image, covering a variety of different needs. You can simply name individual packages
to install in a package list. You can also use metapackages in those lists, or select
them using package control file fields. And finally, you may place package files in your
config/ tree, which is well suited to testing of new or experimental packages before
they are available from a repository.

Package lists 398

Package lists are a powerful way of expressing which packages should be installed. The 399

list syntax supports conditional sections which makes it easy to build lists and adapt
them for use in multiple configurations. Package names may also be injected into the
list using shell helpers at build time.

Note: The behaviour of live-build when specifying a package that does not exist is 400

determined by your choice of APT utility. See Choosing apt or aptitude for more de-
tails.

SiSU git 43

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Using metapackages 401

The simplest way to populate your package list is to use a task metapackage main- 402

tained by your distribution. For example:
403

$ lb config
$ echo task -gnome -desktop > config/package -lists/desktop.list.chroot

This supercedes the older predefined list method supported in live-build 2.x. Unlike 404

predefined lists, taskmetapackages are not specific to the Live System project. Instead,
they are maintained by specialist working groups within the distribution and therefore
reflect the consensus of each group about which packages best serve the needs of the
intended users. They also cover amuch broader range of use cases than the predefined
lists they replace.

All task metapackages are prefixed task-, so a quick way to determine which are avail- 405

able (though it may contain a handful of false hits that match the name but aren’t
metapackages) is to match on the package name with:

406

$ apt -cache search --names -only ^task -

In addition to these, you will find other metapackages with various purposes. Some 407

are subsets of broader task packages, like gnome-core, while others are individual spe-
cialized parts of a Debian Pure Blend, such as the education-* metapackages. To list all
metapackages in the archive, install the debtags package and list all packages with the
role::metapackage tag as follows:

408

$ debtags search role:: metapackage

Local package lists 409

Whether you list metapackages, individual packages, or a combination of both, all local 410

package lists are stored in config/package-lists/. Since more than one list can be used,
this lends itself well to modular designs. For example, you may decide to devote one
list to a particular choice of desktop, another to a collection of related packages that
might as easily be used on top of a different desktop. This allows you to experiment with
different combinations of sets of packages with a minimum of fuss, sharing common
lists between different live image projects.

Package lists that exist in this directory need to have a .list suffix in order to be 411

processed, and then an additional stage suffix, .chroot or .binary to indicate which
stage the list is for.

Note: If you don’t specify the stage suffix, the list will be used for both stages. Normally, 412

SiSU git 44

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

you want to specify .list.chroot so that the packages will only be installed in the live
filesystem and not have an extra copy of the .deb placed on the medium.

Local binary package lists 413

Tomake a binary stage list, place a file suffixedwith .list.binary in config/package-lists/. 414

These packages are not installed in the live filesystem, but are included on the live
medium under pool/. You would typically use such a list with one of the non-live in-
staller variants. As mentioned above, if you want this list to be the same as your
chroot stage list, simply use the .list suffix by itself.

Generated package lists 415

It sometimes happens that the best way to compose a list is to generate it with a 416

script. Any line starting with an exclamation point indicates a command to be executed
within the chroot when the image is built. For example, one might include the line !
grep-aptavail -n -sPackage -FPriority standard | sort in a package list to produce a
sorted list of available packages with Priority: standard.

In fact, selecting packages with the grep-aptavail command (from the dctrl-tools pack- 417

age) is so useful that live-build provides a Packages helper script as a convenience.
This script takes two arguments: field and pattern. Thus, you can create a list with the
following contents:

418

$ lb config
$ echo '! Packages Priority standard ' > config/package -lists/standard.list.chroot

Using conditionals inside package lists 419

Any of the live-build configuration variables stored in config/* (minus the LB_ prefix) 420

may be used in conditional statements in package lists. Generally, this means any lb
config option uppercased and with dashes changed to underscores. But in practice, it is
only the ones that influence package selection that make sense, such as DISTRIBUTION,
ARCHITECTURES or ARCHIVE_AREAS.

For example, to install ia32-libs if the –architectures amd64 is specified: 421

422

#if ARCHITECTURES amd64
ia32 -libs
#endif

You may test for any one of a number of values, e.g. to install memtest86+ if either 423

–architectures i386 or –architectures amd64 is specified:
424

SiSU git 45

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

#if ARCHITECTURES i386 amd64
memtest86+
#endif

You may also test against variables that may contain more than one value, e.g. to 425

install vrms if either contrib or non-free is specified via –archive-areas:
426

#if ARCHIVE_AREAS contrib non -free
vrms
#endif

The nesting of conditionals is not supported. 427

Removing packages at install time 428

You can list packages in files with .list.chroot_live and .list.chroot_install suffixes 429

inside the config/package-lists directory. If both a live and an install list exist, the pack-
ages in the .list.chroot_live list are removed with a hook after the installation (if the
user uses the installer). The packages in the .list.chroot_install list are present both
in the live system and in the installed system. This is a special tweak for the installer
and may be useful if you have –debian-installer live set in your config, and wish to
remove live system-specific packages at install time.

Desktop and language tasks 430

Desktop and language tasks are special cases that need some extra planning and con- 431

figuration. Live images are different from Debian Installer images in this respect. In
the Debian Installer, if the medium was prepared for a particular desktop environment
flavour, the corresponding task will be automatically installed. Thus, there are inter-
nal gnome-desktop, kde-desktop, lxde-desktop and xfce-desktop tasks, none of which are
offered in tasksel’s menu. Likewise, there are no menu entries for tasks for languages,
but the user’s language choice during the install influences the selection of correspond-
ing language tasks.

When developing a desktop live image, the image typically boots directly to a working 432

desktop, the choices of both desktop and default language having been made at build
time, not at run time as in the case of the Debian Installer. That’s not to say that a live
image couldn’t be built to support multiple desktops or multiple languages and offer
the user a choice, but that is not live-build’s default behaviour.

Because there is no provision made automatically for language tasks, which include 433

such things as language-specific fonts and input-method packages, if you want them,
you need to specify them in your configuration. For example, a GNOME desktop image
containing support for German might include these task metapackages:

434

SiSU git 46

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

$ lb config
$ echo "task -gnome -desktop task -laptop" >> config/package -lists/my.list.chroot
$ echo "task -german task -german -desktop task -german -gnome -desktop" >> config/package -lists/my.←↩

list.chroot

Kernel flavour and version 435

One or more kernel flavours will be included in your image by default, depending on 436

the architecture. You can choose different flavours via the –linux-flavours option. Each
flavour is suffixed to the default stub linux-image to form each metapackage name
which in turn depends on an exact kernel package to be included in your image.

Thus by default, an amd64 architecture image will include the linux-image-amd64 flavour 437

metapackage, and an i386 architecture image will include the linux-image-586 meta-
package.

When more than one kernel package version is available in your configured archives, 438

you can specify a different kernel package name stub with the –linux-packages option.
For example, supposing you are building an amd64 architecture image and add the exper-
imental archive for testing purposes so you can install the linux-image-3.18.0-trunk-amd64
kernel. You would configure that image as follows:

439

$ lb config --linux -packages linux -image -3.18.0 - trunk
$ echo "deb http ://ftp.debian.org/debian/ experimental main" > config/archives/experimental.←↩

list.chroot

Custom kernels 440

You can build and include your own custom kernels, so long as they are integrated 441

within the Debian package management system. The live-build system does not sup-
port kernels not built as .deb packages.

The proper and recommended way to deploy your own kernel packages is to follow the 442

instructions in the kernel-handbook. Remember to modify the ABI and flavour suffixes
appropriately, then include a complete build of the linux and matching linux-latest
packages in your repository.

If you opt to build the kernel packages without the matching metapackages, you need 443

to specify an appropriate –linux-packages stub as discussed in Kernel flavour and version.
As we explain in Installing modified or third-party packages, it is best if you include your
custom kernel packages in your own repository, though the alternatives discussed in
that section work as well.

It is beyond the scope of this document to give advice on how to customize your ker- 444

nel. However, you must at least ensure your configuration satisfies these minimum
requirements:

SiSU git 47

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Use an initial ramdisk. 445

Include the union filesystem module (i.e. usually aufs). 446

Include any other filesystem modules required by your configuration (i.e. usually 447

squashfs).

Installing modified or third-party packages 448

While it is against the philosophy of a live system, it may sometimes be necessary to 449

build a live system with modified versions of packages that are in the Debian repository.
This may be to modify or support additional features, languages and branding, or even
to remove elements of existing packages that are undesirable. Similarly, ”third-party”
packages may be used to add bespoke and/or proprietary functionality.

This section does not cover advice regarding building ormaintainingmodified packages. 450

Joachim Breitner’s ’How to fork privately’ method from ⌜ http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html ⌟
may be of interest, however. The creation of bespoke packages is covered in the Debian
New Maintainers’ Guide at ⌜ https://www.debian.org/doc/maint-guide/ ⌟ and elsewhere.

There are two ways of installing modified custom packages: 451

packages.chroot 452

Using a custom APT repository 453

Using packages.chroot is simpler to achieve and useful for ”one-off” customizations 454

but has a number of drawbacks, while using a custom APT repository is more time-
consuming to set up.

Using packages.chroot to install custom packages 455

To install a custom package, simply copy it to the config/packages.chroot/ directory. 456

Packages that are inside this directory will be automatically installed into the live sys-
tem during build - you do not need to specify them elsewhere.

Packages must be named in the prescribed way. One simple way to do this is to use 457

dpkg-name.

Using packages.chroot for installation of custom packages has disadvantages: 458

It is not possible to use secure APT. 459

You must install all appropriate packages in the config/packages.chroot/ directory. 460

It does not lend itself to storing live system configurations in revision control. 461

SiSU git 48

http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
https://www.debian.org/doc/maint-guide/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Using an APT repository to install custom packages 462

Unlike using packages.chroot, when using a custom APT repository you must ensure that 463

you specify the packages elsewhere. See Choosing packages to install for details.

While it may seem unnecessary effort to create an APT repository to install custom 464

packages, the infrastructure can be easily re-used at a later date to offer updates of
the modified packages.

Custom packages and APT 465

live-build uses APT to install all packages into the live system so will therefore inherit 466

behaviours from this program. One relevant example is that (assuming a default con-
figuration) given a package available in two different repositories with different version
numbers, APT will elect to install the package with the higher version number.

Because of this, you may wish to increment the version number in your custom pack- 467

ages’ debian/changelog files to ensure that your modified version is installed over one in
the official Debian repositories. This may also be achieved by altering the live system’s
APT pinning preferences - see APT pinning for more information.

Configuring APT at build time 468

You can configure APT through a number of options applied only at build time. (APT 469

configuration used in the running live system may be configured in the normal way
for live system contents, that is, by including the appropriate configurations through
config/includes.chroot/.) For a complete list, look for options starting with apt in the
lb_config man page.

Choosing apt or aptitude 470

You can elect to use either apt or aptitude when installing packages at build time. 471

Which utility is used is governed by the –apt argument to lb config. Choose the method
implementing the preferred behaviour for package installation, the notable difference
being how missing packages are handled.

apt: With this method, if a missing package is specified, the package installation will 472

fail. This is the default setting.

aptitude: With this method, if a missing package is specified, the package installation 473

will succeed.

Using a proxy with APT 474

One commonly required APT configuration is to deal with building an image behind a 475

SiSU git 49

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

proxy. Youmay specify your APT proxy with the –apt-ftp-proxy or –apt-http-proxy options
as needed, e.g.

476

$ lb config --apt -http -proxy http :// proxy/

Tweaking APT to save space 477

You may find yourself needing to save some space on the image medium, in which 478

case one or the other or both of the following options may be of interest.

If you don’t want to include APT indices in the image, you can omit those with: 479

480

$ lb config --apt -indices false

This will not influence the entries in /etc/apt/sources.list, butmerely whether /var/lib/apt481
contains the indices files or not. The tradeoff is that APT needs those indices in order
to operate in the live system, so before performing apt-cache search or apt-get install,
for instance, the user must apt-get update first to create those indices.

If you find the installation of recommended packages bloats your image too much, 482

provided you are prepared to deal with the consequences discussed below, you may
disable that default option of APT with:

483

$ lb config --apt -recommends false

The most important consequence of turning off recommends is that live-boot and 484

live-config themselves recommend some packages that provide important functional-
ity used by most Live configurations, such as user-setup which live-config recommends
and is used to create the live user. In all but the most exceptional circumstances you
need to add back at least some of these recommends to your package lists or else your
image will not work as expected, if at all. Look at the recommended packages for each
of the live-* packages included in your build and if you are not certain you can omit
them, add them back into your package lists.

The more general consequence is that if you don’t install recommended packages for 485

any given package, that is, ”packages that would be found together with this one in
all but unusual installations” (Debian Policy Manual, section 7.2), some packages that
users of your Live system actually need may be omitted. Therefore, we suggest you
review the difference turning off recommends makes to your packages list (see the
binary.packages file generated by lb build) and re-include in your list any missing pack-
ages that you still want installed. Alternatively, if you find you only want a small number
of recommended packages left out, leave recommends enabled and set a negative APT
pin priority on selected packages to prevent them from being installed, as explained in
APT pinning.

SiSU git 50

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Passing options to apt or aptitude 486

If there is not a lb config option to alter APT’s behaviour in the way you need, use 487

–apt-options or –aptitude-options to pass any options through to your configured APT
tool. See the man pages for apt and aptitude for details. Note that both options have
default values that you will need to retain in addition to any overrides you may pro-
vide. So, for example, suppose you have included something from snapshot.debian.org
for testing purposes and want to specify Acquire::Check-Valid-Until=false to make APT
happy with the stale Release file, you would do so as per the following example, ap-
pending the new option after the default value –yes:

488

$ lb config --apt -options "--yes -oAcquire ::Check -Valid -Until=false"

Please check the man pages to fully understand these options and when to use them. 489

This is an example only and should not be construed as advice to configure your im-
age this way. This option would not be appropriate for, say, a final release of a live
image.

For more complicated APT configurations involving apt.conf options you might want 490

to create a config/apt/apt.conf file instead. See also the other apt-* options for a few
convenient shortcuts for frequently needed options.

APT pinning 491

For background, please first read the apt_preferences(5) man page. APT pinning can be 492

configured either for build time, or else for run time. For the former, create config/archives/*.pref,
config/archives/*.pref.chroot, and config/apt/preferences. For the latter, create config/includes.chroot/etc/apt/preferences.

Let’s say you are building a ${testing} live system but need all the live packages that 493

end up in the binary image to be installed from sid at build time. You need to add sid to
your APT sources and pin the live packages from it higher, but all other packages from it
lower, than the default priority. Thus, only the packages you want are installed from sid
at build time and all others are taken from the target system distribution, ${testing}.
The following will accomplish this:

494

$ echo "deb http :// mirror/debian/ sid main" > config/archives/sid.list.chroot
$ cat >> config/archives/sid.pref.chroot << EOF
Package: live -*
Pin: release n=sid
Pin -Priority: 600

Package: *
Pin: release n=sid
Pin -Priority: 1
EOF

Negative pin priorities will prevent a package from being installed, as in the case where 495

you do not want a package that is recommended by another package. Suppose you are

SiSU git 51

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

building an LXDE image using task-lxde-desktop in config/package-lists/desktop.list.chroot,
but don’t want the user prompted to store wifi passwords in the keyring. This meta-
package depends on lxde-core, which recommends gksu, which in turn recommends
gnome-keyring. So you want to omit the recommended gnome-keyring package. This
can be done by adding the following stanza to config/apt/preferences:

496

Package: gnome -keyring
Pin: version *
Pin -Priority: -1

SiSU git 52

https://sisudoc.org
https://git.sisudoc.org

Customizing contents 497

SiSU git 53

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Customizing contents 498

This chapter discusses fine-tuning customization of the live system contents beyond 499

merely choosing which packages to include. Includes allow you to add or replace arbi-
trary files in your live system image, hooks allow you to execute arbitrary commands at
different stages of the build and at boot time, and preseeding allows you to configure
packages when they are installed by supplying answers to debconf questions.

Includes 500

While ideally a live system would include files entirely provided by unmodified pack- 501

ages, it is sometimes convenient to provide or modify some content by means of files.
Using includes, it is possible to add (or replace) arbitrary files in your live system image.
live-build provides two mechanisms for using them:

Chroot local includes: These allow you to add or replace files to the chroot/Live 502

filesystem. Please see Live/chroot local includes for more information.

Binary local includes: These allow you to add or replace files in the binary image. 503

Please see Binary local includes for more information.

Please see Terms for more information about the distinction between the ”Live” and 504

”binary” images.

Live/chroot local includes 505

Chroot local includes can be used to add or replace files in the chroot/Live filesystem so 506

that they may be used in the Live system. A typical use is to populate the skeleton user
directory (/etc/skel) used by the Live system to create the live user’s home directory.
Another is to supply configuration files that can be simply added or replaced in the
image without processing; see Live/chroot local hooks if processing is needed.

To include files, simply add them to your config/includes.chroot directory. This direc- 507

tory corresponds to the root directory / of the live system. For example, to add a file
/var/www/index.html in the live system, use:

508

$ mkdir -p config/includes.chroot/var/www
$ cp /path/to/my/index.html config/includes.chroot/var/www

Your configuration will then have the following layout: 509

510

-- config
[...]
|-- includes.chroot
| `-- var
| `-- www
| `-- index.html

SiSU git 54

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

[...]

Chroot local includes are installed after package installation so that files installed by 511

packages are overwritten.

Binary local includes 512

To include material such as documentation or videos on the medium filesystem so 513

that it is accessible immediately upon insertion of the medium without booting the
Live system, you can use binary local includes. This works in a similar fashion to chroot
local includes. For example, suppose the files /video_demo.* are demo videos of the live
system described by and linked to by an HTML index page. Simply copy the material
to config/includes.binary/ as follows:

514

$ cp ~/ video_demo .* config/includes.binary/

These files will now appear in the root directory of the live medium. 515

Hooks 516

Hooks allow commands to be performed in the chroot and binary stages of the build in 517

order to customize the image.

Live/chroot local hooks 518

To run commands in the chroot stage, create a hook script with a .hook.chroot suffix 519

containing the commands in the config/hooks/ directory. The hook will run in the chroot
after the rest of your chroot configuration has been applied, so remember to ensure
your configuration includes all packages and files your hook needs in order to run.
See the example chroot hook scripts for various common chroot customization tasks
provided in /usr/share/doc/live-build/examples/hooks which you can copy or symlink to
use them in your own configuration.

Boot-time hooks 520

To execute commands at boot time, you can supply live-config hooks as explained in 521

the ”Customization” section of its man page. Examine live-config’s own hooks pro-
vided in /lib/live/config/, noting the sequence numbers. Then provide your own hook
prefixed with an appropriate sequence number, either as a chroot local include in
config/includes.chroot/lib/live/config/, or as a custom package as discussed in In-
stalling modified or third-party packages.

SiSU git 55

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Binary local hooks 522

To run commands in the binary stage, create a hook script with a .hook.binary suffix 523

containing the commands in the config/hooks/ directory. The hook will run after all
other binary commands are run, but before binary_checksums, the very last binary
command. The commands in your hook do not run in the chroot, so take care to not
modify any files outside of the build tree, or you may damage your build system! See
the example binary hook scripts for various common binary customization tasks pro-
vided in /usr/share/doc/live-build/examples/hooks which you can copy or symlink to use
them in your own configuration.

Preseeding Debconf questions 524

Files in the config/preseed/ directory suffixed with .cfg followed by the stage (.chroot or 525

.binary) are considered to be debconf preseed files and are installed by live-build using
debconf-set-selections during the corresponding stage.

Formore information about debconf, please see debconf(7) in the debconf package. 526

SiSU git 56

https://sisudoc.org
https://git.sisudoc.org

Customizing run time behaviours 527

SiSU git 57

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Customizing run time behaviours 528

All configuration that is done during run time is done by live-config. Here are some 529

of the most common options of live-config that users are interested in. A full list of all
possibilities can be found in the man page of live-config.

Customizing the live user 530

One important consideration is that the live user is created by live-boot at boot time, 531

not by live-build at build time. This not only influences where materials relating to the
live user are introduced in your build, as discussed in Live/chroot local includes, but
also any groups and permissions associated with the live user.

You can specify additional groups that the live user will belong to by using any of the pos- 532

sibilities to configure live-config. For example, to add the live user to the fuse group, you
can either add the following file in config/includes.chroot/etc/live/config/user-setup.conf:

533

LIVE_USER_DEFAULT_GROUPS ="audio cdrom dip floppy video plugdev netdev powerdev scanner ←↩
bluetooth fuse"

or use live-config.user-default-groups=audio,cdrom,dip,floppy,video,plugdev,netdev,powerdev,scanner,bluetooth,fuse534

as a boot parameter.

It is also possible to change the default username ”user” and the default password 535

”live”. If you want to do that for any reason, you can easily achieve it as follows:

To change the default username you can simply specify it in your config: 536

537

$ lb config --bootappend -live "boot=live components username=live -user"

One possible way of changing the default password is by means of a hook as de- 538

scribed in Boot-time hooks. In order to do that you can use the ”passwd” hook from
/usr/share/doc/live-config/examples/hooks, prefix it accordingly (e.g. 2000-passwd) and
add it to config/includes.chroot/lib/live/config/

Customizing locale and language 539

When the live system boots, language is involved in two steps: 540

the locale generation 541

setting the keyboard configuration 542

The default locale when building a Live system is locales=en_US.UTF-8. To define the lo- 543

cale that should be generated, use the locales parameter in the –bootappend-live option
of lb config, e.g.

SiSU git 58

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

544

$ lb config --bootappend -live "boot=live components locales=de_CH.UTF -8"

Multiple locales may be specified as a comma-delimited list. 545

This parameter, as well as the keyboard configuration parameters indicated below, can 546

also be used at the kernel command line. You can specify a locale by language_country (in
which case the default encoding is used) or the full language_country.encodingword. A list
of supported locales and the encoding for each can be found in /usr/share/i18n/SUPPORTED.

Both the console and X keyboard configuration are performed by live-config using the 547

console-setup package. To configure them, use the keyboard-layouts, keyboard-variants,
keyboard-options and keyboard-model boot parameters via the –bootappend-live option.
Valid options for these can be found in /usr/share/X11/xkb/rules/base.lst. To find layouts
and variants for a given language, try searching for the English name of the language
and/or the country where the language is spoken, e.g:

548

$ egrep -i '(^!| german .* switzerland)' /usr/share/X11/xkb/rules/base.lst
! model
! layout

ch German (Switzerland)
! variant

legacy ch: German (Switzerland , legacy)
de_nodeadkeys ch: German (Switzerland , eliminate dead keys)
de_sundeadkeys ch: German (Switzerland , Sun dead keys)
de_mac ch: German (Switzerland , Macintosh)

! option

Note that each variant lists the layout to which it applies in the description. 549

Often, only the layout needs to be configured. For example, to get the locale files for 550

German and Swiss German keyboard layout in X use:
551

$ lb config --bootappend -live "boot=live components locales=de_CH.UTF -8 keyboard -layouts=ch"

However, for very specific use cases, you may wish to include other parameters. For 552

example, to set up a French system with a French-Dvorak layout (called Bepo) on a
TypeMatrix EZ-Reach 2030 USB keyboard, use:

553

$ lb config --bootappend -live \
"boot=live components locales=fr_FR.UTF -8 keyboard -layouts=fr keyboard -variants=bepo ←↩

keyboard -model=tm2030usb"

Multiple values may be specified as comma-delimited lists for each of the keyboard-* 554

options, with the exception of keyboard-model, which accepts only one value. Please see
the keyboard(5)man page for details and examples of XKBMODEL, XKBLAYOUT, XKBVARIANT and
XKBOPTIONS variables. If multiple keyboard-variants values are given, they will bematched

SiSU git 59

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

one-to-one with keyboard-layouts values (see setxkbmap(1) -variant option). Empty val-
ues are allowed; e.g. to define two layouts, the default being US QWERTY and the other
being US Dvorak, use:

555

$ lb config --bootappend -live \
"boot=live components keyboard -layouts=us,us keyboard -variants=,dvorak"

Persistence 556

A live cd paradigm is a pre-installed system which runs from read-only media, like a 557

cdrom, where writes and modifications do not survive reboots of the host hardware
which runs it.

A live system is a generalization of this paradigm and thus supports other media in 558

addition to CDs; but still, in its default behaviour, it should be considered read-only
and all the run-time evolutions of the system are lost at shutdown.

’Persistence’ is a common name for different kinds of solutions for saving across reboots 559

some, or all, of this run-time evolution of the system. To understand how it works it
would be handy to know that even if the system is booted and run from read-only media,
modifications to the files and directories are written on writable media, typically a ram
disk (tmpfs) and ram disks’ data do not survive reboots.

The data stored on this ramdisk should be saved on a writable persistent medium like 560

local storage media, a network share or even a session of a multisession (re)writable
CD/DVD. All these media are supported in live systems in different ways, and all but the
last one require a special boot parameter to be specified at boot time: persistence.

If the boot parameter persistence is set (and nopersistence is not set), local storage 561

media (e.g. hard disks, USB drives) will be probed for persistence volumes during boot.
It is possible to restrict which types of persistence volumes to use by specifying certain
boot parameters described in the live-boot(7) man page. A persistence volume is any
of the following:

a partition, identified by its GPT name. 562

a filesystem, identified by its filesystem label. 563

an image file located on the root of any readable filesystem (even an NTFS partition 564

of a foreign OS), identified by its filename.

The volume label for overlays must be persistence but it will be ignored unless it con- 565

tains in its root a file named persistence.conf which is used to fully customize the vol-
ume’s persistence, this is to say, specifying the directories that you want to save in your
persistence volume after a reboot. See The persistence.conf file for more details.

Here are some examples of how to prepare a volume to be used for persistence. It can 566

be, for instance, an ext4 partition on a hard disk or on a usb key created with, e.g.:

SiSU git 60

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

567

mkfs.ext4 -L persistence /dev/sdb1

See also Using the space left on a USB stick. 568

If you already have a partition on your device, you could just change the label with one 569

of the following:
570

tune2fs -L persistence /dev/sdb1 # for ext2 ,3,4 filesystems

Here’s an example of how to create an ext4-based image file to be used for persis- 571

tence:
572

$ dd if=/dev/null of=persistence bs=1 count=0 seek=1G # for a 1GB sized image file
$ /sbin/mkfs.ext4 -F persistence

Once the image file is created, as an example, to make /usr persistent but only saving 573

the changes you make to that directory and not all the contents of /usr, you can use
the ”union” option. If the image file is located in your home directory, copy it to the
root of your hard drive’s filesystem and mount it in /mnt as follows:

574

cp persistence /
mount -t ext4 /persistence /mnt

Then, create the persistence.conf file adding content and unmount the image file. 575

576

echo "/usr union" >> /mnt/persistence.conf
umount /mnt

Now, reboot into your live medium with the boot parameter ”persistence”. 577

The persistence.conf file 578

A volumewith the label persistencemust be configured bymeans of the persistence.conf 579

file to make arbitrary directories persistent. That file, located on the volume’s filesys-
tem root, controls which directories it makes persistent, and in which way.

How custom overlay mounts are configured is described in full detail in the persis- 580

tence.conf(5) man page, but a simple example should be sufficient for most uses. Let’s
say we want to make our home directory and APT cache persistent in an ext4 filesystem
on the /dev/sdb1 partition:

581

SiSU git 61

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

mkfs.ext4 -L persistence /dev/sdb1
mount -t ext4 /dev/sdb1 /mnt
echo "/home" >> /mnt/persistence.conf
echo "/var/cache/apt" >> /mnt/persistence.conf
umount /mnt

Then we reboot. During the first boot the contents of /home and /var/cache/apt will 582

be copied into the persistence volume, and from then on all changes to these direc-
tories will live in the persistence volume. Please note that any paths listed in the
persistence.conf file cannot contain white spaces or the special . and .. path com-
ponents. Also, neither /lib, /lib/live (or any of their sub-directories) nor / can be
made persistent using custom mounts. As a workaround for this limitation you can add
/ union to your persistence.conf file to achieve full persistence.

Using more than one persistence store 583

There are different methods of using multiple persistence store for different use cases. 584

For instance, using several volumes at the same time or selecting only one, among
various, for very specific purposes.

Several different custom overlay volumes (with their own persistence.conf files) can be 585

used at the same time, but if several volumes make the same directory persistent, only
one of them will be used. If any two mounts are ”nested” (i.e. one is a sub-directory
of the other) the parent will be mounted before the child so no mount will be hidden
by the other. Nested custom mounts are problematic if they are listed in the same
persistence.conf file. See the persistence.conf(5) man page for how to handle that
case if you really need it (hint: you usually don’t).

One possible use case: If you wish to store the user data i.e. /home and the superuser 586

data i.e. /root in different partitions, create two partitions with the persistence label and
add a persistence.conf file in each one like this, # echo ”/home” > persistence.conf for
the first partition that will save the user’s files and # echo ”/root” > persistence.conf for
the second partition which will store the superuser’s files. Finally, use the persistence
boot parameter.

If a user would need multiple persistence store of the same type for different loca- 587

tions or testing, such as private and work, the boot parameter persistence-label used in
conjunction with the boot parameter persistence will allow for multiple but unique per-
sistence media. An example would be if a user wanted to use a persistence partition
labeled private for personal data like browser bookmarks or other types, they would
use the boot parameters: persistence persistence-label=private. And to store work re-
lated data, like documents, research projects or other types, they would use the boot
parameters: persistence persistence-label=work.

It is important to remember that each of these volumes, private and work, also needs 588

a persistence.conf file in its root. The live-boot man page contains more information
about how to use these labels with legacy names.

SiSU git 62

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Using persistence with encryption 589

Using the persistence feature means that some sensible data might get exposed to 590

risk. Especially if the persistent data is stored on a portable device such as a usb stick
or an external hard drive. That is when encryption comes in handy. Even if the entire
procedure might seem complicated because of the number of steps to be taken, it is
really easy to handle encrypted partitions with live-boot. In order to use luks, which
is the supported encryption type, you need to install cryptsetup both on the machine
you are creating the encrypted partition with and also in the live system you are going
to use the encrypted persistent partition with.

To install cryptsetup on your machine: 591

592

apt -get install cryptsetup

To install cryptsetup in your live system, add it to your package-lists: 593

594

$ lb config
$ echo "cryptsetup" > config/package -lists/encryption.list.chroot

Once you have your live system with cryptsetup, you basically only need to create a 595

new partition, encrypt it and boot with the persistence and persistence-encryption=luks
parameters. We could have already anticipated this step and added the boot parame-
ters following the usual procedure:

596

$ lb config --bootappend -live "boot=live components persistence persistence -encryption=luks"

Let’s go into the details for all of those who are not familiar with encryption. In the 597

following example we are going to use a partition on a usb stick which corresponds to
/dev/sdc2. Please be warned that you need to determine which partition is the one you
are going to use in your specific case.

The first step is plugging in your usb stick and determine which device it is. The recom- 598

mended method of listing devices in live-manual is using ls -l /dev/disk/by-id. After
that, create a new partition and then, encrypt it with a passphrase as follows:

599

cryptsetup --verify -passphrase luksFormat /dev/sdc2

Then open the luks partition in the virtual device mapper. Use any name you like. We 600

use live here as an example:
601

cryptsetup luksOpen /dev/sdc2 live

SiSU git 63

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

The next step is filling the device with zeros before creating the filesystem: 602

603

dd if=/dev/zero of=/dev/mapper/live

Now, we are ready to create the filesystem. Notice that we are adding the label 604

persistence so that the device is mounted as persistence store at boot time.
605

mkfs.ext4 -L persistence /dev/mapper/live

To continue with our setup, we need to mount the device, for example in /mnt. 606

607

mount /dev/mapper/live /mnt

And create the persistence.conf file in the root of the partition. This is, as explained 608

before, strictly necessary. See The persistence.conf file.
609

echo "/ union" > /mnt/persistence.conf

Then unmount the mount point: 610

611

umount /mnt

And optionally, although it might be a good way of securing the data we have just 612

added to the partition, we can close the device:
613

cryptsetup luksClose live

Let’s summarize the process. So far, we have created an encryption capable live sys- 614

tem, which can be copied to a usb stick as explained in Copying an ISO hybrid image to
a USB stick. We have also created an encrypted partition, which can be located in the
same usb stick to carry it around and we have configured the encrypted partition to be
used as persistence store. So now, we only need to boot the live system. At boot time,
live-boot will prompt us for the passphrase and will mount the encrypted partition to
be used for persistence.

SiSU git 64

https://sisudoc.org
https://git.sisudoc.org

Customizing the binary image 615

SiSU git 65

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Customizing the binary image 616

Bootloaders 617

live-build uses syslinux and some of its derivatives (depending on the image type) as 618

bootloaders by default. They can be easily customized to suit your needs.

In order to use a full theme, copy /usr/share/live/build/bootloaders into config/bootloaders 619

and edit the files in there. If you do not want to bother modifying all supported boot-
loader configurations, only providing a local customized copy of one of the bootload-
ers, e.g. isolinux in config/bootloaders/isolinux is enough too, depending on your use
case.

When modifying one of the default themes, if you want to use a personalized back- 620

ground image that will be displayed together with the boot menu, add a splash.png
picture of 640x480 pixels. Then, remove the splash.svg file.

There are many possibilities when it comes to making changes. For instance, syslinux 621

derivatives are configured by default with a timeout of 0 (zero) which means that they
will pause indefinitely at their splash screen until you press a key.

To modify the boot timeout of a default iso-hybrid image just edit a default isolinux.cfg 622

file specifying the timeout in units of 1/10 seconds. A modified isolinux.cfg to boot
after five seconds would be similar to this:

623

include menu.cfg
default vesamenu.c32
prompt 0
timeout 50

ISO metadata 624

When creating an ISO9660 binary image, you can use the following options to add 625

various textual metadata for your image. This can help you easily identify the version
or configuration of an image without booting it.

LB_ISO_APPLICATION/–iso-application NAME: This should describe the application that 626

will be on the image. The maximum length for this field is 128 characters.

LB_ISO_PREPARER/–iso-preparer NAME: This should describe the preparer of the image, 627

usually with some contact details. The default for this option is the live-build version
you are using, which may help with debugging later. The maximum length for this
field is 128 characters.

LB_ISO_PUBLISHER/–iso-publisher NAME: This should describe the publisher of the im- 628

age, usually with some contact details. The maximum length for this field is 128
characters.

SiSU git 66

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

LB_ISO_VOLUME/–iso-volume NAME: This should specify the volume ID of the image. This 629

is used as a user-visible label on some platforms such as Windows and Apple Mac
OS. The maximum length for this field is 32 characters.

SiSU git 67

https://sisudoc.org
https://git.sisudoc.org

Customizing Debian Installer 630

SiSU git 68

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Customizing Debian Installer 631

Live system images can be integrated with Debian Installer. There are a number of 632

different types of installation, varying in what is included and how the installer oper-
ates.

Please note the careful use of capital letters when referring to the ”Debian Installer” 633

in this section - when used like this we refer explicitly to the official installer for the
Debian system, not anything else. It is often seen abbreviated to ”d-i”.

Types of Debian Installer 634

The three main types of installer are: 635

”Normal” Debian Installer: This is a normal live system image with a separate 636

kernel and initrd which (when selected from the appropriate bootloader) launches into a
standard Debian Installer instance, just as if you had downloaded a CD image of Debian
and booted it. Images containing a live system and such an otherwise independent
installer are often referred to as ”combined images”.

On such images, Debian is installed by fetching and installing .deb packages using 637

debootstrap, from local media or some network-based network, resulting in a default
Debian system being installed to the hard disk.

This whole process can be preseeded and customized in a number of ways; see the 638

relevant pages in the Debian Installer manual for more information. Once you have a
working preseeding file, live-build can automatically put it in the image and enable it
for you.

”Live” Debian Installer: This is a live system image with a separate kernel and initrd 639

which (when selected from the appropriate bootloader) launches into an instance of
the Debian Installer.

Installation will proceed in an identical fashion to the ”normal” installation described 640

above, but at the actual package installation stage, instead of using debootstrap to
fetch and install packages, the live filesystem image is copied to the target. This is
achieved with a special udeb called live-installer.

After this stage, the Debian Installer continues as normal, installing and configuring 641

items such as bootloaders and local users, etc.

Note: to support both normal and live installer entries in the bootloader of the same 642

livemedium, youmust disable live-installer by preseeding live-installer/enable=false.

”Desktop” Debian Installer: Regardless of the type of Debian Installer included, d-i 643

can be launched from the Desktop by clicking on an icon. This is user friendlier in some
situations. In order to make use of this, the debian-installer-launcher package needs
to be included.

Note that by default, live-build does not include Debian Installer images in the images, it 644

SiSU git 69

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

needs to be specifically enabled with lb config. Also, please note that for the ”Desktop”
installer to work, the kernel of the live system must match the kernel d-i uses for the
specified architecture. For example:

645

$ lb config --architectures i386 --linux -flavours 586 \
--debian -installer live

$ echo debian -installer -launcher >> config/package -lists/my.list.chroot

Customizing Debian Installer by preseeding 646

As described in the Debian Installer Manual, Appendix B at ⌜ https://www.debian.org/releases/stable/i386/apb.html ⌟647

, ”Preseeding provides a way to set answers to questions asked during the installation
process, without having to manually enter the answers while the installation is running.
This makes it possible to fully automate most types of installation and even offers some
features not available during normal installations.” This kind of customization is best
accomplished with live-build by placing the configuration in a preseed.cfg file included
in config/includes.installer/. For example, to preseed setting the locale to en_US:

648

$ echo "d-i debian -installer/locale string en_US" \
>> config/includes.installer/preseed.cfg

Customizing Debian Installer content 649

For experimental or debugging purposes, you might want to include locally built d-i 650

component udeb packages. Place these in config/packages.binary/ to include them in
the image. Additional or replacement files and directories may be included in the in-
staller initrd as well, in a similar fashion to Live/chroot local includes, by placing the
material in config/includes.installer/.

SiSU git 70

https://www.debian.org/releases/stable/i386/apb.html
https://sisudoc.org
https://git.sisudoc.org

Project 651

SiSU git 71

https://sisudoc.org
https://git.sisudoc.org

Contributing to the project 652

SiSU git 72

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Contributing to the project 653

When submitting a contribution, please clearly identify its copyright holder and include 654

any applicable licensing statement. Note that to be accepted, the contribution must
be licensed under the same license as the rest of the documents, namely, GPL version
3 or later.

Contributions to the project, such as translations and patches, are greatly welcome. 655

Anyone can directly commit to the repositories, however, we ask you to send bigger
changes to the mailing list to discuss them first. See the section Contact for more
information.

The ${project} uses Git as version control system and source code management. As 656

explained in Git repositories there are two main development branches: debian and
debian-next. Everybody can commit to the debian-next branches of the live-boot,
live-build, live-config, live-images, live-manual and live-tools repositories.

However, there are certain restrictions. The server will reject: 657

Non fast-forward pushes. 658

Merge commits. 659

Adding or removing tags or branches. 660

Even though all commits might be revised, we ask you to use your common sense and 661

make good commits with good commit messages.

Write commit messages that consist of complete, meaningful sentences in English, 662

starting with a capital letter and ending with a full stop. Usually, these will start with
the form ”Fixing/Adding/Removing/Correcting/Translating/...”.

Write good commit messages. The first line must be an accurate summary of the 663

contents of the commit which will be included in the changelog. If you need to make
some further explanations, write them below leaving a blank line after the first one
and then another blank line after each paragraph. Lines of paragraphs should not
exceed 80 characters in length.

Commit atomically, this is to say, do not mix unrelated things in the same commit. 664

Make one different commit for each change you make.

Making changes 665

In order to push to the repositories, you must follow the following procedure. Here we 666

use live-manual as an example so replace it with the name of the repository you want
to work with. For detailed information on how to edit live-manual see Contributing to
this document.

Fetch the public commit key: 667

668

SiSU git 73

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

$ mkdir -p ~/. ssh/keys
$ wget http ://live -systems.org/other/keys/git@live -systems.org -O ~/.ssh/keys/git@live -systems.←↩

org
$ wget http ://live -systems.org/other/keys/git@live -systems.org.pub -O ~/.ssh/keys/git@live -←↩

systems.org.pub
$ chmod 0600 ~/.ssh/keys/git@live -systems.org*

Add the following section to your openssh-client config: 669

670

$ cat >> ~/.ssh/config << EOF
Host live -systems.org

Hostname live -systems.org
User git
IdentitiesOnly yes
IdentityFile ~/. ssh/keys/git@live -systems.org

EOF

Check out a clone of live-manual through ssh: 671

672

$ git clone git@live -systems.org:/live -manual.git
$ cd live -manual && git checkout debian -next

Make sure you have Git author and email set: 673

674

$ git config user.name "John Doe"
$ git config user.email john@example.org

Important: Remember that you should commit any changes on the debian-next 675

branch.

Make your changes. In this example you would first write a new section dealing 676

with applying patches and then prepare to commit adding the files and writing your
commit message like this:

677

$ git commit -a -m "Adding a section on applying patches ."

Push the commit to the server: 678

679

$ git push

SiSU git 74

https://sisudoc.org
https://git.sisudoc.org

Reporting bugs 680

SiSU git 75

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Reporting bugs 681

Live systems are far from being perfect, but we want to make it as close as possible to 682

perfect - with your help. Do not hesitate to report a bug. It is better to fill a report twice
than never. However, this chapter includes recommendations on how to file good bug
reports.

For the impatient: 683

Always check first the image status updates on our homepage at ⌜ http://live-systems.org/ ⌟ 684

for known issues.

Before submitting a bug report always try to reproduce the bug with themost recent 685

versions of the branch of live-build, live-boot, live-config and live-tools that you’re
using (like the newest 4.x version of live-build if you’re using live-build 4).

Try to give as specific information as possible about the bug. This includes 686

(at least) the version of live-build, live-boot, live-config, and live-tools used and the
distribution of the live system you are building.

Known issues 687

Since Debian testing and Debian unstable distributions are moving targets, when 688

you specify either of them as the target system distribution, a successful build may
not always be possible.

If this causes too much difficulty for you, do not build a system based on testing or un- 689

stable, but rather, use stable. live-build always defaults to the stable release.

Currently known issues are listed under the section ’status’ on our homepage at ⌜ http://live-systems.org/ ⌟690

.

It is out of the scope of this manual to train you to correctly identify and fix problems 691

in packages of the development distributions, however, there are two things you can
always try: If a build fails when the target distribution is testing, try unstable. If
unstable does not work either, revert to testing and pin the newer version of the
failing package from unstable (see APT pinning for details).

Rebuild from scratch 692

To ensure that a particular bug is not caused by an uncleanly built system, please 693

always rebuild the whole live system from scratch to see if the bug is reproducible.

Use up-to-date packages 694

Using outdated packages can cause significant problems when trying to reproduce 695

SiSU git 76

http://live-systems.org/
http://live-systems.org/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

(and ultimately fix) your problem. Make sure your build system is up-to-date and any
packages included in your image are up-to-date as well.

Collect information 696

Please provide enough information with your report. Include, at least, the exact version 697

of live-build where the bug is encountered and the steps to reproduce it. Please use
your common sense and provide any other relevant information if you think that it
might help in solving the problem.

To make the most out of your bug report, we require at least the following informa- 698

tion:

Architecture of the host system 699

Distribution of the host system 700

Version of live-build on the host system 701

Version of debootstrap on the host system 702

Architecture of the live system 703

Distribution of the live system 704

Version of live-boot on the live system 705

Version of live-config on the live system 706

Version of live-tools on the live system 707

You can generate a log of the build process by using the tee command. We recommend 708

doing this automatically with an auto/build script (see Managing a configuration for
details).

709

lb build 2>&1 | tee build.log

At boot time, live-boot and live-config store their logfiles in /var/log/live/. Check them 710

for error messages.

Additionally, to rule out other errors, it is always a good idea to tar up your config/ 711

directory and upload it somewhere (do not send it as an attachment to the mailing
list), so that we can try to reproduce the errors you encountered. If this is difficult (e.g.
due to size) you can use the output of lb config –dumpwhich produces a summary of your
config tree (i.e. lists files in subdirectories of config/ but does not include them).

Remember to send in any logs that were produced with English locale settings, e.g. run 712

your live-build commands with a leading LC_ALL=C or LC_ALL=en_US.

SiSU git 77

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Isolate the failing case if possible 713

If possible, isolate the failing case to the smallest possible change that breaks. It is not 714

always easy to do this so if you cannot manage it for your report, do not worry. However,
if you plan your development cycle well, using small enough change sets per iteration,
you may be able to isolate the problem by constructing a simpler ’base’ configuration
that closely matches your actual configuration plus just the broken change set added
to it. If you have a hard time sorting out which of your changes broke, it may be
that you are including too much in each change set and should develop in smaller
increments.

Use the correct package to report the bug against 715

If you do not know what component is responsible for the bug or if the bug is a gen- 716

eral bug concerning live systems, you can fill a bug against the debian-live pseudo-
package.

However, we would appreciate it if you try to narrow it down according to where the 717

bug appears.

At build time while bootstrapping 718

live-build first bootstraps a basic Debian system with debootstrap. If a bug appears 719

here, check if the error is related to a specific Debian package (most likely), or if it is
related to the bootstrapping tool itself.

In both cases, this is not a bug in the live system, but rather in Debian itself and 720

probably we cannot fix it directly. Please report such a bug against the bootstrapping
tool or the failing package.

At build time while installing packages 721

live-build installs additional packages from the Debian archive and depending on the 722

Debian distribution used and the daily archive state, it can fail. If a bug appears here,
check if the error is also reproducible on a normal system.

If this is the case, this is not a bug in the live system, but rather in Debian - please 723

report it against the failing package. Running debootstrap separately from the Live
system build or running lb bootstrap –debug will give you more information.

Also, if you are using a local mirror and/or any sort of proxy and you are experiencing a 724

problem, please always reproduce it first by bootstrapping from an official mirror.

At boot time 725

If your image does not boot, please report it to the mailing list together with the in- 726

SiSU git 78

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

formation requested in Collect information. Do not forget to mention, how/when the
image failed exactly, whether using virtualization or real hardware. If you are using
a virtualization technology of any kind, please always run it on real hardware before
reporting a bug. Providing a screenshot of the failure is also very helpful.

At run time 727

If a package was successfully installed, but fails while actually running the Live system, 728

this is probably a bug in the live system. However:

Do the research 729

Before filing the bug, please search the web for the particular error message or symp- 730

tom you are getting. As it is highly unlikely that you are the only person experiencing
a particular problem. There is always a chance that it has been discussed elsewhere
and a possible solution, patch, or workaround has been proposed.

You should pay particular attention to the live systems mailing list, as well as the home- 731

page, as these are likely to contain the most up-to-date information. If such information
exists, always include the references to it in your bug report.

In addition, you should check the current bug lists for live-build, live-boot, live-config 732

and live-tools to see whether something similar has already been reported.

Where to report bugs 733

The ${project} keeps track of all bugs in the Bug Tracking System (BTS). For information 734

on how to use the system, please see ⌜ https://bugs.debian.org/ ⌟ . You can also submit the
bugs by using the reportbug command from the package with the same name.

In general, you should report build time errors against the live-build package, boot time 735

errors against live-boot, and run time errors against live-config. If you are unsure of
which package is appropriate or need more help before submitting a bug report, please
report it against the debian-live pseudo-package. We will then take care about it and
reassign it where appropriate.

Please note that bugs found in distributions derived from Debian (such as Ubuntu and 736

others) should not be reported to the Debian BTS unless they can be also reproduced
on a Debian system using official Debian packages.

SiSU git 79

https://bugs.debian.org/
https://sisudoc.org
https://git.sisudoc.org

Coding Style 737

SiSU git 80

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Coding Style 738

This chapter documents the coding style used in live systems. 739

Compatibility 740

Don’t use syntax or semantics that are unique to the Bash shell. For example, the 741

use of array constructs.

Only use the POSIX subset - for example, use $(foo) over ‘foo‘. 742

You can check your scripts with ’sh -n’ and ’checkbashisms’. 743

Make sure all shell code runs with ’set -e’. 744

Indenting 745

Always use tabs over spaces. 746

Wrapping 747

Generally, lines are 80 chars at maximum. 748

Use the ”Linux style” of line breaks: 749

Bad: 750

751

if foo; then
bar

fi

Good: 752

753

if foo
then

bar
fi

The same holds for functions: 754

Bad: 755

756

Foo () {
bar

}

SiSU git 81

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Good: 757

758

Foo ()
{

bar
}

Variables 759

Variables are always in capital letters. 760

Variables used in live-build always start with LB_ prefix. 761

Internal temporary variables in live-build should start with the 762

LB prefix.

Local variables start with live-build 763

_
LB prefix.

Variables in connection to a boot parameter in live-config start with LIVE_. 764

All other variables in live-config start with _ prefix. 765

Use braces around variables; e.g. write ${FOO} instead of $FOO. 766

Always protect variables with quotes to respect potential whitespaces: write ”${FOO}” 767

not ${FOO}.

For consistency reasons, always use quotes when assigning values to variables: 768

Bad: 769

770

FOO=bar

Good: 771

772

FOO="bar"

If multiple variables are used, quote the full expression: 773

Bad: 774

775

if [-f "${FOO}"/ foo/"${BAR}"/bar]
then

foobar
fi

SiSU git 82

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Good: 776

777

if [-f "${FOO}/foo/${BAR}/bar"]
then

foobar
fi

Miscellaneous 778

Use ”|” (without the surround quotes) as a separator in calls to sed, e.g. ”sed -e 779

’s|foo|bar|’” (without "").

Don’t use the test command for comparisons or tests, use ”[” ”]” (without ””); e.g. 780

”if [-x /bin/foo]; ...” and not ”if test -x /bin/foo; ...”.

Use case wherever possible over test, as it’s easier to read and faster in execution. 781

Use capitalized names for functions to limit messing with the users environment. 782

SiSU git 83

https://sisudoc.org
https://git.sisudoc.org

Procedures 783

SiSU git 84

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Procedures 784

This chapter documents the procedures within the ${project} for various tasks that 785

need cooperation with other teams in Debian.

Major Releases 786

Releasing a new stable major version of Debian includes a lot of different teams working 787

together to make it happen. At some point, the Live team comes in and builds live
system images. The requirements to do this are:

A mirror containing the released versions for the debian and debian-security archives 788

which the debian-live buildd can access.

The names of the image need to be known (e.g. debian-live-VERSION-ARCH-FLAVOUR.iso).789

The data from debian-cd needs to be synced (udeb exclude lists). 790

Images are built and mirrored on cdimage.debian.org. 791

Point Releases 792

Again, we need updated mirrors of debian and debian-security. 793

Images are built and mirrored on cdimage.debian.org. 794

Send announcement mail. 795

Last Point Release of a Debian Release 796

Remember to adjust both chroot and binary mirrors when building the last set of 797

images for a Debian release after it has been moved away from ftp.debian.org to
archive.debian.org. That way, old prebuilt live images are still useful without user mod-
ifications.

Point release announcement template 798

An announcement mail for point releases can be generated using the template below 799

and the following command:
800

$ sed \
-e 's|@MAJOR@ |9.0|g' \
-e 's|@MINOR@ |9.0.1|g' \
-e 's|@CODENAME@|stretch|g' \
-e 's|@ANNOUNCE@ |2017/ msgXXXXX.html|g'

SiSU git 85

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Please check themail carefully before sending and pass it to others for proof-reading. 801

802

Updated Live @MAJOR@: @MINOR@ released

The Live Systems Project is pleased to announce the @MINOR@ update of the
Live images for the stable distribution Debian @MAJOR@ (codename "@CODENAME@ ").

The images are available for download at:

<http ://live -systems.org/cdimage/release/current/>

and later at:

<http :// cdimage.debian.org/cdimage/release/current -live/>

This update includes the changes of the Debian @MINOR@ release:

<https :// lists.debian.org/debian -announce/@ANNOUNCE@ >

Additionally it includes the following Live -specific changes:

* [INSERT LIVE -SPECIFIC CHANGE HERE]
* [INSERT LIVE -SPECIFIC CHANGE HERE]
* [LARGER ISSUES MAY DESERVE THEIR OWN SECTION]

About Live Systems

The Live Systems Project produces the tools used to build official
live systems and the official live images themselves for Debian.

About Debian

The Debian Project is an association of Free Software developers who
volunteer their time and effort in order to produce the completely free
operating system Debian.

Contact Information

For further information , please visit the Live Systems web pages at
<http ://live -systems.org/>, or contact the Live Systems team at
<debian -live@lists.debian.org >.

SiSU git 86

https://sisudoc.org
https://git.sisudoc.org

Git repositories 803

SiSU git 87

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Git repositories 804

The list of all the available repositories of the ${project} can be found at ⌜ http://live-systems.org/gitweb/ ⌟805

. The project’s git URLs have the form: protocol://live-systems.org/git/repository. Thus,
in order to clone live-manual read-only, launch:

806

$ git clone git ://live -systems.org/git/live -manual.git

Or, 807

808

$ git clone https ://live -systems.org/git/live -manual.git

Or, 809

810

$ git clone http ://live -systems.org/git/live -manual.git

The cloning addresses with write permission have the form: git@live-systems.org:/repository.811

So, again, to clone live-manual over ssh you must type: 812

813

$ git clone git@live -systems.org:live -manual.git

The git tree is made up of several different branches. The debian and the debian- 814

next branches are particularly noteworthy because they contain the actual work that
will eventually be included in each new release.

After cloning any of the existing repositories, you will be on the debian branch. This is 815

appropriate to take a look at the state of the project’s latest release but before starting
work it is crucial to switch to the debian-next branch. To do so:

816

$ git checkout debian -next

The debian-next branch, which is not always fast-forward, is where all the changes 817

are committed first before being merged into the debian branch. To make an analogy,
it is like a testing ground. If you are working on this branch and need to pull, you will
have to do a git pull –rebase so that your local modifications are staged while pulling
from the server and then your changes will be put on top of it all.

Handling multiple repositories 818

If you intend to clone several of the live systems repositories and want to switch to the 819

debian-next branch right away to check the latest code, write a patch or contribute

SiSU git 88

http://live-systems.org/gitweb/
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

with a translation you ought to know that the git server provides a mrconfig file to
ease the handling of multiple repositories. In order to use it you need to install the mr
package and after that, launch:

820

$ mr bootstrap http ://live -systems.org/other/mr/mrconfig

This commandwill automatically clone and checkout to the debian-next branch the de- 821

velopment repositories of the Debian packages produced by the project. These include,
among others, the live-images repository, which contains the configurations used for
the prebuilt images that the project publishes for general use. For more information on
how to use this repository, see Clone a configuration published via Git

SiSU git 89

https://sisudoc.org
https://git.sisudoc.org

Examples 822

SiSU git 90

https://sisudoc.org
https://git.sisudoc.org

Examples 823

SiSU git 91

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Examples 824

This chapter covers example builds for specific use cases with live systems. If you are 825

new to building your own live system images, we recommend you first look at the three
tutorials in sequence, as each one teaches new techniques that will help you use and
understand the remaining examples.

Using the examples 826

To use these examples you need a system to build them on that meets the require- 827

ments listed in Requirements and has live-build installed as described in Installing live-
build.

Note that, for the sake of brevity, in these examples we do not specify a local mirror 828

to use for the build. You can speed up downloads considerably if you use a local mirror.
Youmay specify the options when you use lb config, as described in Distribution mirrors
used at build time, or for more convenience, set the default for your build system in
/etc/live/build.conf. Simply create this file and in it, set the corresponding LB_MIRROR_*
variables to your preferred mirror. All other mirrors used in the build will be defaulted
from these values. For example:

829

LB_MIRROR_BOOTSTRAP ="http :// mirror/debian /"
LB_MIRROR_CHROOT_SECURITY ="http :// mirror/debian -security /"
LB_MIRROR_CHROOT_BACKPORTS ="http :// mirror/debian -backports /"

Tutorial 1: A default image 830

Use case: Create a simple first image, learning the basics of live-build. 831

In this tutorial, we will build a default ISO hybrid live system image containing only 832

base packages (no Xorg) and some live system support packages, as a first exercise in
using live-build.

You can’t get much simpler than this: 833

834

$ mkdir tutorial1 ; cd tutorial1 ; lb config

Examine the contents of the config/ directory if you wish. You will see stored here a 835

skeletal configuration, ready to customize or, in this case, use immediately to build a
default image.

Now, as superuser, build the image, saving a log as you build with tee. 836

837

lb build 2>&1 | tee build.log

SiSU git 92

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Assuming all goes well, after a while, the current directory will contain live-image-i386.hybrid.iso.838

This ISO hybrid image can be booted directly in a virtual machine as described in Test-
ing an ISO image with Qemu and Testing an ISO image with VirtualBox, or else imaged
onto optical media or a USB flash device as described in Burning an ISO image to a
physical medium and Copying an ISO hybrid image to a USB stick, respectively.

Tutorial 2: A web browser utility 839

Use case: Create a web browser utility image, learning how to apply customiza- 840

tions.

In this tutorial, we will create an image suitable for use as a web browser utility, serving 841

as an introduction to customizing live system images.
842

$ mkdir tutorial2
$ cd tutorial2
$ lb config
$ echo "task -lxde -desktop iceweasel" >> config/package -lists/my.list.chroot

Our choice of LXDE for this example reflects our desire to provide a minimal desktop 843

environment, since the focus of the image is the single use we have in mind, the web
browser. We could go even further and provide a default configuration for the web
browser in config/includes.chroot/etc/iceweasel/profile/, or additional support pack-
ages for viewing various kinds of web content, but we leave this as an exercise for
the reader.

Build the image, again as superuser, keeping a log as in Tutorial 1: 844

845

lb build 2>&1 | tee build.log

Again, verify the image is OK and test, as in Tutorial 1. 846

Tutorial 3: A personalized image 847

Use case: Create a project to build a personalized image, containing your favourite 848

software to take with you on a USB stick wherever you go, and evolving in successive
revisions as your needs and preferences change.

Since we will be changing our personalized image over a number of revisions, and 849

we want to track those changes, trying things experimentally and possibly reverting
them if things don’t work out, we will keep our configuration in the popular git version
control system. We will also use the best practice of autoconfiguration via auto scripts
as described in Managing a configuration.

SiSU git 93

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

First revision 850

851

$ mkdir -p tutorial3/auto
$ cp /usr/share/doc/live -build/examples/auto/* tutorial3/auto/
$ cd tutorial3

Edit auto/config to read as follows: 852

853

#!/ bin/sh

lb config noauto \
--architectures i386 \
--linux -flavours 686-pae \
"${@}"

Perform lb config to generate the config tree, using the auto/config script you just 854

created:
855

$ lb config

Now populate your local package list: 856

857

$ echo "task -lxde -desktop iceweasel xchat" >> config/package -lists/my.list.chroot

First, –architectures i386 ensures that on our amd64 build system, we build a 32-bit 858

version suitable for use on most machines. Second, we use –linux-flavours 686-pae
because we don’t anticipate using this image on much older systems. Third, we have
chosen the lxde task metapackage to give us a minimal desktop. And finally, we have
added two initial favourite packages: iceweasel and xchat.

Now, build the image: 859

860

lb build

Note that unlike in the first two tutorials, we no longer have to type 2>&1 | tee build.log 861

as that is now included in auto/build.

Once you’ve tested the image (as in Tutorial 1) and are satisfied it works, it’s time 862

to initialize our git repository, adding only the auto scripts we just created, and then
make the first commit:

863

$ git init
$ cp /usr/share/doc/live -build/examples/gitignore .gitignore
$ git add .
$ git commit -m "Initial import ."

SiSU git 94

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Second revision 864

In this revision, we’re going to clean up from the first build, add the vlc package to our 865

configuration, rebuild, test and commit.

The lb clean command will clean up all generated files from the previous build except 866

for the cache, which saves having to re-download packages. This ensures that the
subsequent lb build will re-run all stages to regenerate the files from our new configu-
ration.

867

lb clean

Now append the vlc package to our local package list in config/package-lists/my.list.chroot:868
869

$ echo vlc >> config/package -lists/my.list.chroot

Build again: 870

871

lb build

Test, and when you’re satisfied, commit the next revision: 872

873

$ git commit -a -m "Adding vlc media player ."

Of course, more complicated changes to the configuration are possible, perhaps adding 874

files in subdirectories of config/. When you commit new revisions, just take care not
to hand edit or commit the top-level files in config containing LB_* variables, as these
are build products, too, and are always cleaned up by lb clean and re-created with lb
config via their respective auto scripts.

We’ve come to the end of our tutorial series. While many more kinds of customization 875

are possible, even just using the few features explored in these simple examples, an
almost infinite variety of different images can be created. The remaining examples
in this section cover several other use cases drawn from the collected experiences of
users of live systems.

A VNC Kiosk Client 876

Use case: Create an image with live-build to boot directly to a VNC server. 877

Make a build directory and create an skeletal configuration inside it, disabling recom- 878

mends to make a minimal system. And then create two initial package lists: the first
one generated with a script provided by live-build named Packages (see Generated pack-
age lists), and the second one including xorg, gdm3, metacity and xvnc4viewer.

SiSU git 95

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

879

$ mkdir vnc -kiosk -client
$ cd vnc -kiosk -client
$ lb config -a i386 -k 686-pae --apt -recommends false
$ echo '! Packages Priority standard ' > config/package -lists/standard.list.chroot
$ echo "xorg gdm3 metacity xvnc4viewer" > config/package -lists/my.list.chroot

As explained in Tweaking APT to save space you may need to re-add some recom- 880

mended packages to make your image work properly.

An easy way to list recommends is using apt-cache. For example: 881

882

$ apt -cache depends live -config live -boot

In this example we found out that we had to re-include several packages recommended 883

by live-config and live-boot: user-setup to make autologin work and sudo as an essential
program to shutdown the system. Besides, it could be handy to add live-tools to be
able to copy the image to RAM and eject to eventually eject the live medium. So:

884

$ echo "live -tools user -setup sudo eject" > config/package -lists/recommends.list.chroot

After that, create the directory /etc/skel in config/includes.chroot and put a custom 885

.xsession in it for the default user that will launch metacity and start xvncviewer, con-
necting to port 5901 on a server at 192.168.1.2:

886

$ mkdir -p config/includes.chroot/etc/skel
$ cat > config/includes.chroot/etc/skel/. xsession << EOF
#!/ bin/sh

/usr/bin/metacity &
/usr/bin/xvncviewer 192.168.1.2:1

exit
EOF

Build the image: 887

888

lb build

Enjoy. 889

A base image for a 128MB USB key 890

Use case: Create a default image with some components removed in order to fit on a 891

128MB USB key with a little space left over to use as you see fit.

SiSU git 96

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

When optimizing an image to fit a certain media size, you need to understand the trade- 892

offs you are making between size and functionality. In this example, we trim only so
much as to make room for additional material within a 128MB media size, but without
doing anything to destroy the integrity of the packages contained within, such as the
purging of locale data via the localepurge package, or other such ”intrusive” optimiza-
tions. Of particular note, we use –debootstrap-options to create a minimal system from
scratch.

893

$ lb config --apt -indices false --apt -recommends false --debootstrap -options "--variant=minbase←↩
" --firmware -chroot false --memtest none

To make the image work properly, we must re-add, at least, two recommended pack- 894

ages which are left out by the –apt-recommends false option. See Tweaking APT to save
space

895

$ echo "user -setup sudo" > config/package -lists/recommends.list.chroot

Now, build the image in the usual way: 896

897

lb build 2>&1 | tee build.log

On the author’s system at the time of writing this, the above configuration produced 898

a 110MB image. This compares favourably with the 192MB image produced by the
default configuration in Tutorial 1.

Leaving off APT’s indices with –apt-indices false saves a fair amount of space, the 899

tradeoff being that you need to do an apt-get update before using apt in the live sys-
tem. Dropping recommended packages with –apt-recommends false saves some addi-
tional space, at the expense of omitting some packages you might otherwise expect
to be there. –debootstrap-options ”–variant=minbase” bootstraps a minimal system from
the start. Not automatically including firmware packages with –firmware-chroot false
saves some space too. And finally, –memtest none prevents the installation of a memory
tester.

Note: A minimal system can also be achieved using hooks, like for example the 900

stripped.hook.chroot hook found in /usr/share/doc/live-build/examples/hooks. It may shave
off additional small amounts of space and produce an image of 91MB. However, it does
so by removal of documentation and other files from packages installed on the system.
This violates the integrity of those packages and that, as the comment header warns,
may have unforeseen consequences. That is why using a minimal debootstrap is the
recommended way of achieving this goal.

A localized GNOME desktop and installer 901

Use case: Create a GNOME desktop image, localized for Switzerland and including an 902

SiSU git 97

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

installer.

We want to make an iso-hybrid image for i386 architecture using our preferred desktop, 903

in this case GNOME, containing all of the same packages that would be installed by the
standard Debian installer for GNOME.

Our initial problem is the discovery of the names of the appropriate language tasks. 904

Currently, live-build cannot help with this. While we might get lucky and find this by
trial-and-error, there is a tool, grep-dctrl, which can be used to dig it out of the task de-
scriptions in tasksel-data, so to prepare, make sure you have both of those things:

905

apt -get install dctrl -tools tasksel -data

Now we can search for the appropriate tasks, first with: 906

907

$ grep -dctrl -FTest -lang de /usr/share/tasksel/descs/debian -tasks.desc -sTask
Task: german

By this command, we discover the task is called, plainly enough, german. Now to find 908

the related tasks:
909

$ grep -dctrl -FEnhances german /usr/share/tasksel/descs/debian -tasks.desc -sTask
Task: german -desktop
Task: german -kde -desktop

At boot time we will generate the de_CH.UTF-8 locale and select the ch keyboard 910

layout. Now let’s put the pieces together. Recalling from Using metapackages that
task metapackages are prefixed task-, we just specify these language boot parameters,
then add standard priority packages and all our discovered task metapackages to our
package list as follows:

911

$ mkdir live -gnome -ch
$ cd live -gnome -ch
$ lb config \

-a i386 \
--bootappend -live "boot=live components locales=de_CH.UTF -8 keyboard -layouts=ch" \
--debian -installer live

$ echo '! Packages Priority standard ' > config/package -lists/standard.list.chroot
$ echo task -gnome -desktop task -german task -german -desktop >> config/package -lists/desktop.list.←↩

chroot
$ echo debian -installer -launcher >> config/package -lists/installer.list.chroot

Note that we have included the debian-installer-launcher package to launch the in- 912

staller from the live desktop. The 586 kernel flavour, which is currently necessary for
the launcher to work properly, will be included by default.

SiSU git 98

https://sisudoc.org
https://git.sisudoc.org

Appendix 913

SiSU git 99

https://sisudoc.org
https://git.sisudoc.org

Style guide 914

SiSU git 100

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Style guide 915

Guidelines for authors 916

This section deals with some general considerations to be taken into account when writ- 917

ing technical documentation for live-manual. They are divided into linguistic features
and recommended procedures.

Note: Authors should first read Contributing to this document 918

Linguistic features 919

Use plain English 920

Keep in mind that a high percentage of your readers are not native speakers of English. 921

So as a general rule try to use short, meaningful sentences, followed by a full stop.

This does not mean that you have to use a simplistic, naive style. It is a suggestion to 922

try to avoid, as much as possible, complex subordinate sentences that make the text
difficult to understand for non-native speakers of English.

Variety of English 923

The most widely spread varieties of English are British and American so it is very likely 924

that most authors will use either one or the other. In a collaborative environment, the
ideal variety would be ”International English” but it is very difficult, not to say impossi-
ble, to decide on which variety among all the existing ones, is the best to use.

We expect that different varieties may mix without creating misunderstandings but 925

in general terms you should try to be coherent and before deciding on using British,
American or any other English flavour at your discretion, please take a look at how
other people write and try to imitate them.

Be balanced 926

Do not be biased. Avoid including references to ideologies completely unrelated to 927

live-manual. Technical writing should be as neutral as possible. It is in the very nature
of scientific writing.

Be politically correct 928

Try to avoid sexist language as much as possible. If you need to make references to 929

the third person singular preferably use ”they” rather than ”he” or ”she” or awkward
inventions such as ”s/he”, ”s(he)” and the like.

Be concise 930

Go straight to the point and do not wander around aimlessly. Give as much informa- 931

tion as necessary but do not give more information than necessary, this is to say, do
not explain unnecessary details. Your readers are intelligent. Presume some previous
knowledge on their part.

SiSU git 101

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Minimize translation work 932

Keep in mind that whatever you write will have to be translated into several other 933

languages. This implies that a number of people will have to do an extra work if you
add useless or redundant information.

Be coherent 934

As suggested before, it is almost impossible to standardize a collaborative document 935

into a perfectly unified whole. However, every effort on your side to write in a coherent
way with the rest of the authors will be appreciated.

Be cohesive 936

Use as many text-forming devices as necessary to make your text cohesive and unam- 937

biguous. (Text-forming devices are linguistic markers such as connectors).

Be descriptive 938

It is preferable to describe the point in one or several paragraphs than merely using 939

a number of sentences in a typical ”changelog” style. Describe it! Your readers will
appreciate it.

Dictionary 940

Look up the meaning of words in a dictionary or encyclopedia if you do not know how 941

to express certain concepts in English. But keep in mind that a dictionary can either
be your best friend or can turn into your worst enemy if you do not know how to use it
correctly.

English has the largest vocabulary that exists (with over one million words). Many of 942

these words are borrowings from other languages. When looking up the meaning of
words in a bilingual dictionary the tendency of a non-native speaker of English is to
choose the one that sounds more similar in their mother tongue. This often turns into
an excessively formal discourse which does not sound quite natural in English.

As a general rule, if a concept can be expressed using different synonyms, it is a good 943

advice to choose the first word proposed by the dictionary. If in doubt, choosing words of
Germanic origin (Usually monosyllabic words) is often the right thing to do. Be warned
that these two techniques might produce a rather informal discourse but at least your
choice of words will be of wide use and generally accepted.

Using a dictionary of collocations is recommended. They are extremely helpful when it 944

comes to know which words usually occur together.

Again it is a good practice to learn from the work of others. Using a search engine to 945

check how other authors use certain expressions may help a lot.

False friends, idioms and other idiomatic expressions 946

Watch out for false friends. No matter how proficient you are in a foreign language you 947

cannot help falling from time to time in the trap of the so called ”false friends”, words

SiSU git 102

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

that look similar in two languages but whose meanings or uses might be completely
different.

Try to avoid idioms as much as possible. ”Idioms” are expressions that may convey a 948

completely different meaning from what their individual words seem to mean. Some-
times, idioms might be difficult to understand even for native speakers of English!

Avoid slang, abbreviations, contractions... 949

Even though you are encouraged to use plain, everyday English, technical writing be- 950

longs to the formal register of the language.

Try to avoid slang, unusual abbreviations that are difficult to understand and above all 951

contractions that try to imitate the spoken language. Not to mention typical irc and
family friendly expressions.

Procedures 952

Test before write 953

It is important that authors test their examples before adding them to live-manual to en- 954

sure that everything works as described. Testing on a clean chroot or VM can be a good
starting point. Besides, it would be ideal if the tests were then carried out on different
machines with different hardware to spot possible problems that may arise.

Examples 955

When providing an example try to be as specific as you can. An example is, after all, 956

just an example.

It is often better to use a line that only applies to a specific case than using abstractions 957

that may confuse your readers. In this case you can provide a brief explanation of the
effects of the proposed example.

There may be some exceptions when the example suggests using some potentially 958

dangerous commands that, if misused, may cause data loss or other similar undesirable
effects. In this case you should provide a thorough explanation of the possible side
effects.

External links 959

Links to external sites should only be used when the information on those sites is 960

crucial when it comes to understanding a special point. Even so, try to use links to
external sites as sparsely as possible. Internet links are likely to change from time to
time resulting in broken links and leaving your arguments in an incomplete state.

Besides, people who read the manual offline will not have the chance to follow those 961

links.

Avoid branding and things that violate the license under which the manual is pub- 962

lished

SiSU git 103

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Try to avoid branding asmuch as possible. Keep inmind that other downstream projects 963

might make use of the documentation you write. So you are complicating things for
them if you add certain specific material.

live-manual is licensed under the GNU GPL. This has a number of implications that 964

apply to the distribution of the material (of any kind, including copyrighted graphics or
logos) that is published with it.

Write a first draft, revise, edit, improve, redo if necessary 965

- Brainstorm!. You need to organize your ideas first in a logical sequence of events. 966

- Once you have somehow organized those ideas in your mind write a first draft. 967

- Revise grammar, syntax and spelling. Keep in mind that the proper names of the 968

releases, such as ${testing} or sid, should not be capitalized when referred to as code
names. In order to check the spelling you can run the ”spell” target. i.e. make spell

- Improve your statements and redo any part if necessary. 969

Chapters 970

Use the conventional numbering system for chapters and subtitles. e.g. 1, 1.1, 1.1.1, 971

1.1.2 ... 1.2, 1.2.1, 1.2.2 ... 2, 2.1 ... and so on. See markup below.

If you have to enumerate a series of steps or stages in your description, you can also use 972

ordinal numbers: First, second, third ... or First, Then, After that, Finally ... Alternatively
you can use bulleted items.

Markup 973

And last but not least, live-manual uses 974

⌜SiSU ⌟ to process the text files and produce a multiple format output. It is recom-
mended to take a look at
⌜SiSU’s manual ⌟ to get familiar with its markup, or else type:

975

$ sisu --help markup

Here are some markup examples that may prove useful: 976

- For emphasis/bold text: 977

978

{foo} or !{foo}!

produces: foo or foo. Use it to emphasize certain key words. 979

- For italics: 980

981

/{foo}/

SiSU git 104

http://www.sisudoc.org/
http://www.sisudoc.org/sisu/en/html/sisu_manual/markup.html
https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

produces: foo. Use them e.g. for the names of Debian packages. 982

- For monospace: 983

984

#{foo}#

produces: foo. Use it e.g. for the names of commands. And also to highlight some key 985

words or things like paths.

- For code blocks: 986

987

code{

$ foo
bar

}code

produces: 988

989

$ foo
bar

Use code{ to open and }code to close the tags. It is important to remember to leave a 990

space at the beginning of each line of code.

Guidelines for translators 991

This section deals with some general considerations to be taken into account when 992

translating the contents of live-manual.

As a general recommendation, translators should have read and understood the transla- 993

tion rules that apply to their specific languages. Usually, translation groups and mailing
lists provide information on how to produce translated work that complies with Debian
quality standards.

Note: Translators should also read Contributing to this document. In particular the 994

section Translation

Translation hints 995

Comments 996

The role of the translator is to convey as faithfully as possible the meaning of words, 997

sentences, paragraphs and texts as written by the original authors into their target
language.

SiSU git 105

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

So they should refrain from adding personal comments or extra bits of information of 998

their own. If they want to add a comment for other translators working on the same
documents, they can leave it in the space reserved for that. That is, the header of
the strings in the po files preceded by a number sign #. Most graphical translation
programs can automatically handle those types of comments.

TN, Translator’s Note 999

It is perfectly acceptable however, to include a word or an expression in brackets in the 1000

translated text if, and only if, that makes the meaning of a difficult word or expression
clearer to the reader. Inside the brackets the translator should make evident that the
addition was theirs using the abbreviation ”TN” or ”Translator’s Note”.

Impersonal sentences 1001

Documents written in English make an extensive use of the impersonal form ”you”. In 1002

some other languages that do not share this characteristic, this might give the false
impression that the original texts are directly addressing the reader when they are
actually not doing so. Translators must be aware of that fact and reflect it in their
language as accurately as possible.

False friends 1003

The trap of ”false friends” explained before especially applies to translators. Double 1004

check the meaning of suspicious false friends if in doubt.

Markup 1005

Translators working initially with pot files and later on with po files will find many 1006

markup features in the strings. They can translate the text anyway, as long as it is
translatable, but it is extremely important that they use exactly the same markup as
the original English version.

Code blocks 1007

Even though the code blocks are usually untranslatable, including them in the transla- 1008

tion is the only way to score a 100% complete translation. And even though it means
more work at first because it might require the intervention of the translators if the
code changes, it is the best way, in the long run, to identify what has already been
translated and what has not when checking the integrity of the .po files.

Newlines 1009

The translated texts need to have the exact same newlines as the original texts. Be 1010

careful to press the ”Enter” key or type
n if they appear in the original files. These newlines often appear, for instance, in the
code blocks.

Make no mistake, this does not mean that the translated text needs to have the same 1011

length as the English version. That is nearly impossible.

Untranslatable strings 1012

SiSU git 106

https://sisudoc.org
https://git.sisudoc.org

Live Systems Manual

Translators should never translate: 1013

- The code names of releases (which should be written in lowercase) 1014

- The names of programs 1015

- The commands given as examples 1016

- Metadata (often between colons :metadata:) 1017

- Links 1018

- Paths 1019

SiSU git 107

https://sisudoc.org
https://git.sisudoc.org

	Live Systems Manual
	About
	About this manual
	About this manual
	For the impatient
	Terms
	Authors
	Contributing to this document
	Applying changes
	Translation

	About the ${project}
	About the ${project}
	Motivation
	What is wrong with current live systems
	Why create our own live system?

	Philosophy
	Only unchanged packages from Debian ''main''
	No package configuration of the live system

	Contact

	User
	Installation
	Installation
	Requirements
	Installing live-build
	From the Debian repository
	From source
	From 'snapshots'

	Installing live-boot and live-config
	From the Debian repository
	From source
	From 'snapshots'

	The basics
	The basics
	What is a live system?
	Downloading prebuilt images
	Using the web live image builder
	Web builder usage and caveats

	First steps: building an ISO hybrid image
	Using an ISO hybrid live image
	Burning an ISO image to a physical medium
	Copying an ISO hybrid image to a USB stick
	Using the space left on a USB stick
	Booting the live medium

	Using a virtual machine for testing
	Testing an ISO image with QEMU
	Testing an ISO image with VirtualBox

	Building and using an HDD image
	Building a netboot image
	DHCP server
	TFTP server
	NFS server
	Netboot testing HowTo
	Qemu

	Webbooting
	Getting the webboot files
	Booting webboot images

	Overview of tools
	Overview of tools
	The live-build package
	The lb config command
	The lb build command
	The lb clean command

	The live-boot package
	The live-config package

	Managing a configuration
	Managing a configuration
	Dealing with configuration changes
	Why use auto scripts? What do they do?
	Use example auto scripts

	Clone a configuration published via Git

	Customizing contents
	Customization overview
	Build time vs. boot time configuration
	Stages of the build
	Supplement lb config with files
	Customization tasks

	Customizing package installation
	Customizing package installation
	Package sources
	Distribution, archive areas and mode
	Distribution mirrors
	Distribution mirrors used at build time
	Distribution mirrors used at run time
	Additional repositories

	Choosing packages to install
	Package lists
	Using metapackages
	Local package lists
	Local binary package lists
	Generated package lists
	Using conditionals inside package lists
	Removing packages at install time
	Desktop and language tasks
	Kernel flavour and version
	Custom kernels

	Installing modified or third-party packages
	Using packages.chroot to install custom packages
	Using an APT repository to install custom packages
	Custom packages and APT

	Configuring APT at build time
	Choosing apt or aptitude
	Using a proxy with APT
	Tweaking APT to save space
	Passing options to apt or aptitude
	APT pinning

	Customizing contents
	Customizing contents
	Includes
	Live/chroot local includes
	Binary local includes

	Hooks
	Live/chroot local hooks
	Boot-time hooks
	Binary local hooks

	Preseeding Debconf questions

	Customizing run time behaviours
	Customizing run time behaviours
	Customizing the live user
	Customizing locale and language
	Persistence
	The persistence.conf file
	Using more than one persistence store
	Using persistence with encryption

	Customizing the binary image
	Customizing the binary image
	Bootloaders
	ISO metadata

	Customizing Debian Installer
	Customizing Debian Installer
	Types of Debian Installer
	Customizing Debian Installer by preseeding
	Customizing Debian Installer content

	Project
	Contributing to the project
	Contributing to the project
	Making changes

	Reporting bugs
	Reporting bugs
	Known issues
	Rebuild from scratch
	Use up-to-date packages
	Collect information
	Isolate the failing case if possible
	Use the correct package to report the bug against
	At build time while bootstrapping
	At build time while installing packages
	At boot time
	At run time

	Do the research
	Where to report bugs

	Coding Style
	Coding Style
	Compatibility
	Indenting
	Wrapping
	Variables
	Miscellaneous

	Procedures
	Procedures
	Major Releases
	Point Releases
	Last Point Release of a Debian Release
	Point release announcement template

	Git repositories
	Git repositories
	Handling multiple repositories

	Examples
	Examples
	Examples
	Using the examples
	Tutorial 1: A default image
	Tutorial 2: A web browser utility
	Tutorial 3: A personalized image
	First revision
	Second revision

	A VNC Kiosk Client
	A base image for a 128MB USB key
	A localized GNOME desktop and installer

	Appendix
	Style guide
	Style guide
	Guidelines for authors
	Linguistic features
	Procedures

	Guidelines for translators
	Translation hints

