The Cathedral and the Bazaar

Eric S. Raymond

2002-08-02

The Cathedral and the Bazaar

Copyright © I' 2000 Eric S. Raymond.

Permission is granted to copy, distribute and/or modify this document under the terms
of the Open Publication License, version 2.0.

The Cathedral and the Bazaar Eric S. Raymond a

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar
Eric S. Raymond

The Cathedral and the Bazaar Eric S. Raymond

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

The Cathedral and the Bazaar

The Mail Must Get Through

The Importance of Having Users

Release Early, Release Often

How Many Eyeballs Tame Complexity

When Is a Rose Not a Rose?

Popclient becomes Fetchmail

Fetchmail Grows Up

A Few More Lessons from Fetchmail
Necessary Preconditions for the Bazaar Style
The Social Context of Open-Source Software
On Management and the Maginot Line

Epilog: Netscape Embraces the Bazaar

The Cathedral and the Bazaar Eric S. Raymond

N o W N 9

11
14
16
19
21
23
25
29

34

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

The Cathedral and the Bazaar

Linux is subversive. Who would have thought even five years ago (1991) that a world-
class operating system could coalesce as if by magic out of part-time hacking by sev-
eral thousand developers scattered all over the planet, connected only by the tenuous
strands of the Internet?

Certainly not I. By the time Linux swam onto my radar screen in early 1993, | had
already been involved in Unix and open-source development for ten years. | was one
of the first GNU contributors in the mid-1980s. | had released a good deal of open-
source software onto the net, developing or co-developing several programs (nethack,
Emacs’s VC and GUD modes, xlife, and others) that are still in wide use today. | thought
| knew how it was done.

Linux overturned much of what | thought | knew. | had been preaching the Unix gospel
of small tools, rapid prototyping and evolutionary programming for years. But | also
believed there was a certain critical complexity above which a more centralized, a
priori approach was required. | believed that the most important software (operating
systems and really large tools like the Emacs programming editor) needed to be built
like cathedrals, carefully crafted by individual wizards or small bands of mages working
in splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of developmentrelease early and often, delegate everything
you can, be open to the point of promiscuitycame as a surprise. No quiet, rever-
ent cathedral-building hererather, the Linux community seemed to resemble a great
babbling bazaar of differing agendas and approaches (aptly symbolized by the Linux
archive sites, who'd take submissions from anyone) out of which a coherent and stable
system could seemingly emerge only by a succession of miracles.

The fact that this bazaar style seemed to work, and work well, came as a distinct
shock. As | learned my way around, | worked hard not just at individual projects, but
also at trying to understand why the Linux world not only didn’t fly apart in confusion
but seemed to go from strength to strength at a speed barely imaginable to cathedral-
builders.

By mid-1996 | thought | was beginning to understand. Chance handed me a perfect
way to test my theory, in the form of an open-source project that | could consciously
try to run in the bazaar style. So | didand it was a significant success.

This is the story of that project. I'll use it to propose some aphorisms about effective
open-source development. Not all of these are things | first learned in the Linux world,
but we’ll see how the Linux world gives them particular point. If I'm correct, they’ll help
you understand exactly what it is that makes the Linux community such a fountain of
good softwareand, perhaps, they will help you become more productive yourself.

The Cathedral and the Bazaar Eric S. Raymond 2

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

The Mail Must Get Through

Since 1993 I'd been running the technical side of a small free-access Internet service
provider called Chester County InterLink (CCIL) in West Chester, Pennsylvania. | co-
founded CCIL and wrote our unique multiuser bulletin-board softwareyou can check it
out by telnetting to locke.ccil.org. Today it supports almost three thousand users on
thirty lines. The job allowed me 24-hour-a-day access to the net through CCIL's 56K
linein fact, the job practically demanded it!

| had gotten quite used to instant Internet email. | found having to periodically telnet
over to locke to check my mail annoying. What | wanted was for my mail to be delivered
on snark (my home system) so that | would be notified when it arrived and could handle
it using all my local tools.

The Internet’s native mail forwarding protocol, SMTP (Simple Mail Transfer Protocol),
wouldn’t suit, because it works best when machines are connected full-time, while my
personal machine isn’t always on the Internet, and doesn’t have a static IP address.
What | needed was a program that would reach out over my intermittent dialup con-
nection and pull across my mail to be delivered locally. | knew such things existed, and
that most of them used a simple application protocol called POP (Post Office Protocol).
POP is now widely supported by most common mail clients, but at the time, it wasn’t
built in to the mail reader | was using.

| needed a POP3 client. So | went out on the Internet and found one. Actually, | found
three or four. | used one of them for a while, but it was missing what seemed an
obvious feature, the ability to hack the addresses on fetched mail so replies would
work properly.

The problem was this: suppose someone named ‘joe’ on locke sent me mail. If | fetched
the mail to snark and then tried to reply to it, my mailer would cheerfully try to ship it
to a nonexistent ‘joe’ on snark. Hand-editing reply addresses to tack on <@ccil.org>
quickly got to be a serious pain.

This was clearly something the computer ought to be doing for me. But none of the
existing POP clients knew how! And this brings us to the first lesson:

1. Every good work of software starts by scratching a developer’s personal itch.

Perhaps this should have been obvious (it's long been proverbial that "Necessity is
the mother of invention”) but too often software developers spend their days grinding
away for pay at programs they neither need nor love. But not in the Linux worldwhich
may explain why the average quality of software originated in the Linux community is
so high.

So, did I immediately launch into a furious whirl of coding up a brand-new POP3 client to
compete with the existing ones? Not on your life! | looked carefully at the POP utilities
| had in hand, asking myself "Which one is closest to what | want?” Because:

2. Good programmers know what to write. Great ones know what to rewrite (and
reuse).

The Cathedral and the Bazaar EriC S Raymond 3

10

11

12

13

14

15

16

17

18

19

20

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

While | don’t claim to be a great programmer, | try to imitate one. An important trait
of the great ones is constructive laziness. They know that you get an A not for effort
but for results, and that it’s almost always easier to start from a good partial solution
than from nothing at all.

Linus Torvalds, for example, didn’t actually try to write Linux from scratch. Instead,
he started by reusing code and ideas from Minix, a tiny Unix-like operating system for
PC clones. Eventually all the Minix code went away or was completely rewrittenbut
while it was there, it provided scaffolding for the infant that would eventually become
Linux.

In the same spirit, | went looking for an existing POP utility that was reasonably well
coded, to use as a development base.

The source-sharing tradition of the Unix world has always been friendly to code reuse
(this is why the GNU project chose Unix as a base OS, in spite of serious reservations
about the OS itself). The Linux world has taken this tradition nearly to its technological
limit; it has terabytes of open sources generally available. So spending time looking
for some else’s almost-good-enough is more likely to give you good results in the Linux
world than anywhere else.

And it did for me. With those I'd found earlier, my second search made up a total of
nine candidatesfetchpop, PopTart, get-mail, gwpop, pimp, pop-perl, popc, popmail and
upop. The one | first settled on was ‘fetchpop’ by Seung-Hong Oh. | put my header-
rewrite feature in it, and made various other improvements which the author accepted
into his 1.9 release.

A few weeks later, though, | stumbled across the code for popclient by Carl Harris, and
found | had a problem. Though fetchpop had some good original ideas in it (such as
its background-daemon mode), it could only handle POP3 and was rather amateurishly
coded (Seung-Hong was at that time a bright but inexperienced programmer, and both
traits showed). Carl’s code was better, quite professional and solid, but his program
lacked several important and rather tricky-to-implement fetchpop features (including
those I'd coded myself).

Stay or switch? If | switched, I'd be throwing away the coding I'd already done in
exchange for a better development base.

A practical motive to switch was the presence of multiple-protocol support. POP3 is the
most commonly used of the post-office server protocols, but not the only one. Fetchpop
and the other competition didn’t do POP2, RPOP, or APOP, and | was already having
vague thoughts of perhaps adding IMAP (Internet Message Access Protocol, the most
recently designed and most powerful post-office protocol) just for fun.

But | had a more theoretical reason to think switching might be as good an idea as well,
something | learned long before Linux.

3. "Plan to throw one away; you will, anyhow.” (Fred Brooks, The Mythical Man-
Month, Chapter 11)

Or, to put it another way, you often don’t really understand the problem until after the

The Cathedral and the Bazaar Eric S. Raymond 4

21

22

23

24

25

26

27

28

29

30

31

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

first time you implement a solution. The second time, maybe you know enough to do
it right. So if you want to get it right, be ready to start over at least once [JB].

Well (I told myself) the changes to fetchpop had been my first try. So | switched.

After | sent my first set of popclient patches to Carl Harris on 25 June 1996, | found
out that he had basically lost interest in popclient some time before. The code was a
bit dusty, with minor bugs hanging out. | had many changes to make, and we quickly
agreed that the logical thing for me to do was take over the program.

Without my actually noticing, the project had escalated. No longer was | just contem-
plating minor patches to an existing POP client. | took on maintaining an entire one,
and there were ideas bubbling in my head that | knew would probably lead to major
changes.

In a software culture that encourages code-sharing, this is a natural way for a project
to evolve. | was acting out this principle:

4. If you have the right attitude, interesting problems will find you.
But Carl Harris’s attitude was even more important. He understood that

5. When you lose interest in a program, your last duty to it is to hand it off to a
competent successor.

Without ever having to discuss it, Carl and | knew we had a common goal of having the
best solution out there. The only question for either of us was whether | could establish
that | was a safe pair of hands. Once | did that, he acted with grace and dispatch. |
hope | will do as well when it comes my turn.

The Cathedral and the Bazaar EriC S Raymond 5

32

33

34

35

36

37

38

39

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

The Importance of Having Users

And so linherited popclient. Just as importantly, | inherited popclient’s user base. Users
are wonderful things to have, and not just because they demonstrate that you're serv-
ing a need, that you’ve done something right. Properly cultivated, they can become
co-developers.

Another strength of the Unix tradition, one that Linux pushes to a happy extreme, is that
a lot of users are hackers too. Because source code is available, they can be effective
hackers. This can be tremendously useful for shortening debugging time. Given a bit
of encouragement, your users will diagnose problems, suggest fixes, and help improve
the code far more quickly than you could unaided.

6. Treating your users as co-developers is your least-hassle route to rapid code
improvement and effective debugging.

The power of this effect is easy to underestimate. In fact, pretty well all of us in the
open-source world drastically underestimated how well it would scale up with number
of users and against system complexity, until Linus Torvalds showed us differently.

In fact, | think Linus’s cleverest and most consequential hack was not the construction
of the Linux kernel itself, but rather his invention of the Linux development model.
When | expressed this opinion in his presence once, he smiled and quietly repeated
something he has often said: ”"I’'m basically a very lazy person who likes to get credit
for things other people actually do.” Lazy like a fox. Or, as Robert Heinlein famously
wrote of one of his characters, too lazy to fail.

In retrospect, one precedent for the methods and success of Linux can be seen in the
development of the GNU Emacs Lisp library and Lisp code archives. In contrast to the
cathedral-building style of the Emacs C core and most other GNU tools, the evolution
of the Lisp code pool was fluid and very user-driven. Ideas and prototype modes were
often rewritten three or four times before reaching a stable final form. And loosely-
coupled collaborations enabled by the Internet, a la Linux, were frequent.

Indeed, my own most successful single hack previous to fetchmail was probably Emacs
VC (version control) mode, a Linux-like collaboration by email with three other people,
only one of whom (Richard Stallman, the author of Emacs and founder of the Free Soft-
ware Foundation) | have met to this day. It was a front-end for SCCS, RCS and later
CVS from within Emacs that offered "one-touch” version control operations. It evolved
from a tiny, crude sccs.el mode somebody else had written. And the development
of VC succeeded because, unlike Emacs itself, Emacs Lisp code could go through re-
lease/test/improve generations very quickly.

The Emacs story is not unique. There have been other software products with a two-
level architecture and a two-tier user community that combined a cathedral-mode core
and a bazaar-mode toolbox. One such is MATLAB, a commercial data-analysis and visu-
alization tool. Users of MATLAB and other products with a similar structure invariably
report that the action, the ferment, the innovation mostly takes place in the open part
of the tool where a large and varied community can tinker with it.

The Cathedral and the Bazaar EriC S Raymond 6

40

41

42

43

44

45

46

47

48

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

Release Early, Release Often

Early and frequent releases are a critical part of the Linux development model. Most
developers (including me) used to believe this was bad policy for larger than trivial
projects, because early versions are almost by definition buggy versions and you don’t
want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-building style of devel-
opment. If the overriding objective was for users to see as few bugs as possible, why
then you’d only release a version every six months (or less often), and work like a dog
on debugging between releases. The Emacs C core was developed this way. The Lisp
library, in effect, was notbecause there were active Lisp archives outside the FSF’s con-
trol, where you could go to find new and development code versions independently of
Emacs’s release cycle [QR].

The most important of these, the Ohio State Emacs Lisp archive, anticipated the spirit
and many of the features of today’s big Linux archives. But few of us really thought
very hard about what we were doing, or about what the very existence of that archive
suggested about problems in the FSF’s cathedral-building development model. | made
one serious attempt around 1992 to get a lot of the Ohio code formally merged into the
official Emacs Lisp library. | ran into political trouble and was largely unsuccessful.

But by a year later, as Linux became widely visible, it was clear that something different
and much healthier was going on there. Linus’s open development policy was the very
opposite of cathedral-building. Linux’s Internet archives were burgeoning, multiple
distributions were being floated. And all of this was driven by an unheard-of frequency
of core system releases.

Linus was treating his users as co-developers in the most effective possible way:
7. Release early. Release often. And listen to your customers.

Linus’s innovation wasn’t so much in doing quick-turnaround releases incorporating
lots of user feedback (something like this had been Unix-world tradition for a long time),
but in scaling it up to a level of intensity that matched the complexity of what he was
developing. In those early times (around 1991) it wasn’t unknown for him to release a
new kernel more than once a day! Because he cultivated his base of co-developers and
leveraged the Internet for collaboration harder than anyone else, this worked.

But how did it work? And was it something | could duplicate, or did it rely on some
unique genius of Linus Torvalds?

| didn’t think so. Granted, Linus is a damn fine hacker. How many of us could engineer
an entire production-quality operating system kernel from scratch? But Linux didn’t
represent any awesome conceptual leap forward. Linus is not (or at least, not yet) an
innovative genius of design in the way that, say, Richard Stallman or James Gosling
(of NeWS and Java) are. Rather, Linus seems to me to be a genius of engineering and
implementation, with a sixth sense for avoiding bugs and development dead-ends and
a true knack for finding the minimume-effort path from point A to point B. Indeed, the

The Cathedral and the Bazaar Eric S. Raymond 7

49

50

51

52

53

54

55

56

57

58

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

whole design of Linux breathes this quality and mirrors Linus’s essentially conservative
and simplifying design approach.

So, if rapid releases and leveraging the Internet medium to the hilt were not accidents
but integral parts of Linus’s engineering-genius insight into the minimum-effort path,
what was he maximizing? What was he cranking out of the machinery?

Put that way, the question answers itself. Linus was keeping his hacker/users constantly
stimulated and rewardedstimulated by the prospect of having an ego-satisfying piece
of the action, rewarded by the sight of constant (even daily) improvement in their
work.

Linus was directly aiming to maximize the number of person-hours thrown at debug-
ging and development, even at the possible cost of instability in the code and user-
base burnout if any serious bug proved intractable. Linus was behaving as though he
believed something like this:

8. Given a large enough beta-tester and co-developer base, almost every problem
will be characterized quickly and the fix obvious to someone.

Or, less formally, "Given enough eyeballs, all bugs are shallow.” | dub this: "Linus’s
Law”.

My original formulation was that every problem "will be transparent to somebody”. Li-
nus demurred that the person who understands and fixes the problem is not necessarily
or even usually the person who first characterizes it. "Somebody finds the problem,”
he says, "and somebody else understands it. And I'll go on record as saying that find-
ing it is the bigger challenge.” That correction is important; we’ll see how in the next
section, when we examine the practice of debugging in more detail. But the key point
is that both parts of the process (finding and fixing) tend to happen rapidly.

In Linus’s Law, | think, lies the core difference underlying the cathedral-builder and
bazaar styles. In the cathedral-builder view of programming, bugs and development
problems are tricky, insidious, deep phenomena. It takes months of scrutiny by a ded-
icated few to develop confidence that you've winkled them all out. Thus the long re-
lease intervals, and the inevitable disappointment when long-awaited releases are not
perfect.

In the bazaar view, on the other hand, you assume that bugs are generally shallow phe-
nomenaor, at least, that they turn shallow pretty quickly when exposed to a thousand
eager co-developers pounding on every single new release. Accordingly you release
often in order to get more corrections, and as a beneficial side effect you have less to
lose if an occasional botch gets out the door.

And that's it. That’'s enough. If "Linus’s Law” is false, then any system as complex
as the Linux kernel, being hacked over by as many hands as the that kernel was,
should at some point have collapsed under the weight of unforseen bad interactions
and undiscovered "deep” bugs. If it’s true, on the other hand, it is sufficient to explain
Linux’s relative lack of bugginess and its continuous uptimes spanning months or even
years.

The Cathedral and the Bazaar EriC S Raymond 8

59

60

61

62

63

64

65

66

67

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

Maybe it shouldn’t have been such a surprise, at that. Sociologists years ago discovered
that the averaged opinion of a mass of equally expert (or equally ignorant) observers
is quite a bit more reliable a predictor than the opinion of a single randomly-chosen
one of the observers. They called this the Delphi effect. It appears that what Linus
has shown is that this applies even to debugging an operating systemthat the Delphi
effect can tame development complexity even at the complexity level of an OS kernel.
[CV]

One special feature of the Linux situation that clearly helps along the Delphi effect is the
fact that the contributors for any given project are self-selected. An early respondent
pointed out that contributions are received not from a random sample, but from people
who are interested enough to use the software, learn about how it works, attempt to find
solutions to problems they encounter, and actually produce an apparently reasonable
fix. Anyone who passes all these filters is highly likely to have something useful to
contribute.

Linus’s Law can be rephrased as "Debugging is parallelizable”. Although debugging
requires debuggers to communicate with some coordinating developer, it doesn’t re-
quire significant coordination between debuggers. Thus it doesn’t fall prey to the same
quadratic complexity and management costs that make adding developers problem-
atic.

In practice, the theoretical loss of efficiency due to duplication of work by debuggers
almost never seems to be an issue in the Linux world. One effect of a "release early
and often” policy is to minimize such duplication by propagating fed-back fixes quickly

JHI.

Brooks (the author of The Mythical Man-Month) even made an off-hand observation
related to this: "The total cost of maintaining a widely used program is typically 40
percent or more of the cost of developing it. Surprisingly this cost is strongly affected
by the number of users. More users find more bugs.” [emphasis added].

More users find more bugs because adding more users adds more different ways of
stressing the program. This effect is amplified when the users are co-developers. Each
one approaches the task of bug characterization with a slightly different perceptual
set and analytical toolkit, a different angle on the problem. The "Delphi effect” seems
to work precisely because of this variation. In the specific context of debugging, the
variation also tends to reduce duplication of effort.

So adding more beta-testers may not reduce the complexity of the current "deepest”
bug from the developer’s point of view, but it increases the probability that someone’s
toolkit will be matched to the problem in such a way that the bug is shallow to that
person.

Linus coppers his bets, too. In case there are serious bugs, Linux kernel version are
numbered in such a way that potential users can make a choice either to run the last
version designated "stable” or to ride the cutting edge and risk bugs in order to get
new features. This tactic is not yet systematically imitated by most Linux hackers, but
perhaps it should be; the fact that either choice is available makes both more attractive.

The Cathedral and the Bazaar EriC S Raymond 9

68

69

70

71

72

73

74

75

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

[HBS]

The Cathedral and the Bazaar

Eric S. Raymond

10

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

How Many Eyeballs Tame Complexity 76

It's one thing to observe in the large that the bazaar style greatly accelerates debugging 77
and code evolution. It's another to understand exactly how and why it does so at the
micro-level of day-to-day developer and tester behavior. In this section (written three
years after the original paper, using insights by developers who read it and re-examined
their own behavior) we’ll take a hard look at the actual mechanisms. Non-technically
inclined readers can safely skip to the next section.

One key to understanding is to realize exactly why it is that the kind of bug report 7
nonsource-aware users normally turn in tends not to be very useful. Nonsource-aware
users tend to report only surface symptoms; they take their environment for granted,

so they (a) omit critical background data, and (b) seldom include a reliable recipe for
reproducing the bug.

The underlying problem here is a mismatch between the tester’s and the developer’s 1
mental models of the program; the tester, on the outside looking in, and the developer

on the inside looking out. In closed-source development they’re both stuck in these
roles, and tend to talk past each other and find each other deeply frustrating.

Open-source development breaks this bind, making it far easier for tester and devel- so
oper to develop a shared representation grounded in the actual source code and to
communicate effectively about it. Practically, there is a huge difference in leverage
for the developer between the kind of bug report that just reports externally-visible
symptoms and the kind that hooks directly to the developer’s source-codebased men-
tal representation of the program.

Most bugs, most of the time, are easily nailed given even an incomplete but suggestive s
characterization of their error conditions at source-code level. When someone among
your beta-testers can point out, "there’s a boundary problem in line nnn”, or even just
"under conditions X, Y, and Z, this variable rolls over”, a quick look at the offending
code often suffices to pin down the exact mode of failure and generate a fix.

Thus, source-code awareness by both parties greatly enhances both good communica- s
tion and the synergy between what a beta-tester reports and what the core developer(s)
know. In turn, this means that the core developers’ time tends to be well conserved,
even with many collaborators.

Another characteristic of the open-source method that conserves developer time is the &3
communication structure of typical open-source projects. Above | used the term "core
developer”; this reflects a distinction between the project core (typically quite small; a
single core developer is common, and one to three is typical) and the project halo of
beta-testers and available contributors (which often numbers in the hundreds).

The fundamental problem that traditional software-development organization addresses s
is Brook’s Law: "Adding more programmers to a late project makes it later.” More
generally, Brooks’s Law predicts that the complexity and communication costs of a
project rise with the square of the number of developers, while work done only rises
linearly.

The Cathedral and the Bazaar Eric S. Raymond 11

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

Brooks’s Law is founded on experience that bugs tend strongly to cluster at the inter-
faces between code written by different people, and that communications/coordination
overhead on a project tends to rise with the number of interfaces between human be-
ings. Thus, problems scale with the number of communications paths between develop-
ers, which scales as the square of the humber of developers (more precisely, according
to the formula N*(N - 1)/2 where N is the number of developers).

The Brooks’s Law analysis (and the resulting fear of large numbers in development
groups) rests on a hidden assummption: that the communications structure of the
project is necessarily a complete graph, that everybody talks to everybody else. But
on open-source projects, the halo developers work on what are in effect separable
parallel subtasks and interact with each other very little; code changes and bug reports
stream through the core group, and only within that small core group do we pay the
full Brooksian overhead. [SU]

There are are still more reasons that source-codelevel bug reporting tends to be very
efficient. They center around the fact that a single error can often have multiple possi-
ble symptoms, manifesting differently depending on details of the user’s usage pattern
and environment. Such errors tend to be exactly the sort of complex and subtle bugs
(such as dynamic-memory-management errors or nondeterministic interrupt-window
artifacts) that are hardest to reproduce at will or to pin down by static analysis, and
which do the most to create long-term problems in software.

A tester who sends in a tentative source-codelevel characterization of such a multi-
symptom bug (e.g. "It looks to me like there’s a window in the signal handling near
line 1250” or "Where are you zeroing that buffer?”) may give a developer, otherwise
too close to the code to see it, the critical clue to a half-dozen disparate symptoms.
In cases like this, it may be hard or even impossible to know which externally-visible
misbehaviour was caused by precisely which bugbut with frequent releases, it’s unnec-
essary to know. Other collaborators will be likely to find out quickly whether their bug
has been fixed or not. In many cases, source-level bug reports will cause misbehaviours
to drop out without ever having been attributed to any specific fix.

Complex multi-symptom errors also tend to have multiple trace paths from surface
symptoms back to the actual bug. Which of the trace paths a given developer or
tester can chase may depend on subtleties of that person’s environment, and may
well change in a not obviously deterministic way over time. In effect, each developer
and tester samples a semi-random set of the program’s state space when looking for
the etiology of a symptom. The more subtle and complex the bug, the less likely that
skill will be able to guarantee the relevance of that sample.

For simple and easily reproducible bugs, then, the accent will be on the "semi” rather
than the "random”; debugging skill and intimacy with the code and its architecture
will matter a lot. But for complex bugs, the accent will be on the "random”. Under
these circumstances many people running traces will be much more effective than a
few people running traces sequentiallyeven if the few have a much higher average skill
level.

This effect will be greatly amplified if the difficulty of following trace paths from different

The Cathedral and the Bazaar Eric S. Raymond 12

85

86

87

88

89

90

91

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

surface symptoms back to a bug varies significantly in a way that can’t be predicted
by looking at the symptoms. A single developer sampling those paths sequentially will
be as likely to pick a difficult trace path on the first try as an easy one. On the other
hand, suppose many people are trying trace paths in parallel while doing rapid releases.
Then it is likely one of them will find the easiest path immediately, and nail the bug in
a much shorter time. The project maintainer will see that, ship a new release, and the
other people running traces on the same bug will be able to stop before having spent
too much time on their more difficult traces [R]].

The Cathedral and the Bazaar Eric S. Raymond 13

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

When Is a Rose Not a Rose?

Having studied Linus’s behavior and formed a theory about why it was successful, |
made a conscious decision to test this theory on my new (admittedly much less complex
and ambitious) project.

But the first thing | did was reorganize and simplify popclient a lot. Carl Harris’s imple-
mentation was very sound, but exhibited a kind of unnecessary complexity common
to many C programmers. He treated the code as central and the data structures as
support for the code. As a result, the code was beautiful but the data structure design
ad-hoc and rather ugly (at least by the high standards of this veteran LISP hacker).

I had another purpose for rewriting besides improving the code and the data structure
design, however. That was to evolve it into something | understood completely. It's no
fun to be responsible for fixing bugs in a program you don’t understand.

For the first month or so, then, | was simply following out the implications of Carl’'s
basic design. The first serious change | made was to add IMAP support. | did this by
reorganizing the protocol machines into a generic driver and three method tables (for
POP2, POP3, and IMAP). This and the previous changes illustrate a general principle
that’s good for programmers to keep in mind, especially in languages like C that don’t
naturally do dynamic typing:

9. Smart data structures and dumb code works a lot better than the other way
around.

Brooks, Chapter 9: "Show me your flowchart and conceal your tables, and | shall con-
tinue to be mystified. Show me your tables, and | won’t usually need your flowchart;
it’ll be obvious.” Allowing for thirty years of terminological/cultural shift, it's the same
point.

At this point (early September 1996, about six weeks from zero) | started thinking that
a name change might be in orderafter all, it wasn’t just a POP client any more. But |
hesitated, because there was as yet nothing genuinely new in the design. My version
of popclient had yet to develop an identity of its own.

That changed, radically, when popclient learned how to forward fetched mail to the
SMTP port. I'll get to that in a moment. But first: | said earlier that I'd decided to use
this project to test my theory about what Linus Torvalds had done right. How (you may
well ask) did | do that? In these ways:

| released early and often (almost never less often than every ten days; during
periods of intense development, once a day).

| grew my beta list by adding to it everyone who contacted me about fetchmail.

| sent chatty announcements to the beta list whenever | released, encouraging
people to participate.

And | listened to my beta-testers, polling them about design decisions and stroking
them whenever they sent in patches and feedback.

The Cathedral and the Bazaar Eric S. Raymond 14

92

93

94

95

96

97

98

99

100

101

102

103

104

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

The payoff from these simple measures was immediate. From the beginning of the
project, | got bug reports of a quality most developers would kill for, often with good
fixes attached. | got thoughtful criticism, | got fan mail, | got intelligent feature sugges-
tions. Which leads to:

10. If you treat your beta-testers as if they’re your most valuable resource, they
will respond by becoming your most valuable resource.

One interesting measure of fetchmail’s success is the sheer size of the project beta list,
fetchmail-friends. At the time of latest revision of this paper (November 2000) it has
287 members and is adding two or three a week.

Actually, when | revised in late May 1997 | found the list was beginning to lose members
from its high of close to 300 for an interesting reason. Several people have asked me
to unsubscribe them because fetchmail is working so well for them that they no longer
need to see the list traffic! Perhaps this is part of the normal life-cycle of a mature
bazaar-style project.

The Cathedral and the Bazaar Eric S. Raymond 15

105

106

107

108

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

Popclient becomes Fetchmail

The real turning point in the project was when Harry Hochheiser sent me his scratch
code for forwarding mail to the client machine’s SMTP port. | realized almost imme-
diately that a reliable implementation of this feature would make all the other mail
delivery modes next to obsolete.

For many weeks | had been tweaking fetchmail rather incrementally while feeling like
the interface design was serviceable but grubbyinelegant and with too many exiguous
options hanging out all over. The options to dump fetched mail to a mailbox file or
standard output particularly bothered me, but | couldn’t figure out why.

(If you don’t care about the technicalia of Internet mail, the next two paragraphs can
be safely skipped.)

What | saw when | thought about SMTP forwarding was that popclient had been trying
to do too many things. It had been designed to be both a mail transport agent (MTA)
and a local delivery agent (MDA). With SMTP forwarding, it could get out of the MDA
business and be a pure MTA, handing off mail to other programs for local delivery just
as sendmail does.

Why mess with all the complexity of configuring a mail delivery agent or setting up
lock-and-append on a mailbox when port 25 is almost guaranteed to be there on any
platform with TCP/IP support in the first place? Especially when this means retrieved
mail is guaranteed to look like normal sender-initiated SMTP mail, which is really what
we want anyway.

(Back to a higher level....)

Even if you didn’t follow the preceding technical jargon, there are several important
lessons here. First, this SMTP-forwarding concept was the biggest single payoff | got
from consciously trying to emulate Linus’s methods. A user gave me this terrific ideaall
| had to do was understand the implications.

11. The next best thing to having good ideas is recognizing good ideas from your
users. Sometimes the latter is better.

109

110

111

112

113

114

115

116

117

Interestingly enough, you will quickly find that if you are completely and self-deprecatingly:is

truthful about how much you owe other people, the world at large will treat you as
though you did every bit of the invention yourself and are just being becomingly mod-
est about your innate genius. We can all see how well this worked for Linus!

(When | gave my talk at the first Perl Conference in August 1997, hacker extraordinaire
Larry Wall was in the front row. As | got to the last line above he called out, religious-
revival style, "Tell it, tell it, brother!”. The whole audience laughed, because they knew
this had worked for the inventor of Perl, too.)

After a very few weeks of running the project in the same spirit, | began to get similar
praise not just from my users but from other people to whom the word leaked out. |
stashed away some of that email; I'll look at it again sometime if | ever start wondering
whether my life has been worthwhile :-).

The Cathedral and the Bazaar Eric S. Raymond 16

119

120

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

But there are two more fundamental, non-political lessons here that are general to all
kinds of design.

12. Often, the most striking and innovative solutions come from realizing that your
concept of the problem was wrong.

| had been trying to solve the wrong problem by continuing to develop popclient as
a combined MTA/MDA with all kinds of funky local delivery modes. Fetchmail’s design
needed to be rethought from the ground up as a pure MTA, a part of the normal SMTP-
speaking Internet mail path.

When you hit a wall in developmentwhen you find yourself hard put to think past the
next patchit’s often time to ask not whether you’ve got the right answer, but whether
you’'re asking the right question. Perhaps the problem needs to be reframed.

Well, | had reframed my problem. Clearly, the right thing to do was (1) hack SMTP
forwarding support into the generic driver, (2) make it the default mode, and (3) even-
tually throw out all the other delivery modes, especially the deliver-to-file and deliver-
to-standard-output options.

| hesitated over step 3 for some time, fearing to upset long-time popclient users depen-
dent on the alternate delivery mechanisms. In theory, they could immediately switch
to .forward files or their non-sendmail equivalents to get the same effects. In practice
the transition might have been messy.

But when | did it, the benefits proved huge. The cruftiest parts of the driver code
vanished. Configuration got radically simplerno more grovelling around for the system
MDA and user’s mailbox, no more worries about whether the underlying OS supports
file locking.

Also, the only way to lose mail vanished. If you specified delivery to a file and the disk
got full, your mail got lost. This can’t happen with SMTP forwarding because your SMTP
listener won’t return OK unless the message can be delivered or at least spooled for
later delivery.

Also, performance improved (though not so you’d notice it in a single run). Another not
insignificant benefit of this change was that the manual page got a lot simpler.

Later, | had to bring delivery via a user-specified local MDA back in order to allow
handling of some obscure situations involving dynamic SLIP. But | found a much simpler
way to do it.

The moral? Don’t hesitate to throw away superannuated features when you can do
it without loss of effectiveness. Antoine de Saint-Exupéry (who was an aviator and
aircraft designer when he wasn’t authoring classic children’s books) said:

13. "Perfection (in design) is achieved not when there is nothing more to add, but
rather when there is nothing more to take away.”

When your code is getting both better and simpler, that is when you know it’s right.
And in the process, the fetchmail design acquired an identity of its own, different from
the ancestral popclient.

The Cathedral and the Bazaar Eric S. Raymond 17

121

122

123

124

125

126

127

128

129

131

132

133

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

It was time for the name change. The new design looked much more like a dual of
sendmail than the old popclient had; both are MTAs, but where sendmail pushes then
delivers, the new popclient pulls then delivers. So, two months off the blocks, | renamed
it fetchmail.

There is a more general lesson in this story about how SMTP delivery came to fetchmail.
It is not only debugging that is parallelizable; development and (to a perhaps surprising
extent) exploration of design space is, too. When your development mode is rapidly it-
erative, development and enhancement may become special cases of debuggingfixing
‘bugs of omission’ in the original capabilities or concept of the software.

Even at a higher level of design, it can be very valuable to have lots of co-developers
random-walking through the design space near your product. Consider the way a pud-
dle of water finds a drain, or better yet how ants find food: exploration essentially by
diffusion, followed by exploitation mediated by a scalable communication mechanism.
This works very well; as with Harry Hochheiser and me, one of your outriders may well
find a huge win nearby that you were just a little too close-focused to see.

The Cathedral and the Bazaar Eric S. Raymond 18

134

135

136

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

Fetchmail Grows Up

There | was with a neat and innovative design, code that | knew worked well because |
used it every day, and a burgeoning beta list. It gradually dawned on me that | was no
longer engaged in a trivial personal hack that might happen to be useful to few other
people. | had my hands on a program that every hacker with a Unix box and a SLIP/PPP
mail connection really needs.

With the SMTP forwarding feature, it pulled far enough in front of the competition to
potentially become a "category killer”, one of those classic programs that fills its niche
so competently that the alternatives are not just discarded but almost forgotten.

| think you can’t really aim or plan for a result like this. You have to get pulled into
it by design ideas so powerful that afterward the results just seem inevitable, natural,
even foreordained. The only way to try for ideas like that is by having lots of ideasor
by having the engineering judgment to take other peoples’ good ideas beyond where
the originators thought they could go.

Andy Tanenbaum had the original idea to build a simple native Unix for IBM PCs, for
use as a teaching tool (he called it Minix). Linus Torvalds pushed the Minix concept
further than Andrew probably thought it could goand it grew into something wonderful.
In the same way (though on a smaller scale), | took some ideas by Carl Harris and Harry
Hochheiser and pushed them hard. Neither of us was ‘original’ in the romantic way peo-
ple think is genius. But then, most science and engineering and software development
isn’t done by original genius, hacker mythology to the contrary.

The results were pretty heady stuff all the samein fact, just the kind of success every
hacker lives for! And they meant | would have to set my standards even higher. To
make fetchmail as good as | now saw it could be, I'd have to write not just for my own
needs, but also include and support features necessary to others but outside my orbit.
And do that while keeping the program simple and robust.

The first and overwhelmingly most important feature | wrote after realizing this was
multidrop supportthe ability to fetch mail from mailboxes that had accumulated all mail
for a group of users, and then route each piece of mail to its individual recipients.

| decided to add the multidrop support partly because some users were clamoring for it,
but mostly because | thought it would shake bugs out of the single-drop code by forcing
me to deal with addressing in full generality. And so it proved. Getting RFC 822 address
parsing right took me a remarkably long time, not because any individual piece of it is
hard but because it involved a pile of interdependent and fussy details.

But multidrop addressing turned out to be an excellent design decision as well. Here’s
how | knew:

14. Any tool should be useful in the expected way, but a truly great tool lends itself
to uses you never expected.

The unexpected use for multidrop fetchmail is to run mailing lists with the list kept,
and alias expansion done, on the client side of the Internet connection. This means

The Cathedral and the Bazaar Eric S. Raymond 19

137

138

139

140

141

142

143

144

145

146

147

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

someone running a personal machine through an ISP account can manage a mailing
list without continuing access to the ISP’s alias files.

Another important change demanded by my beta-testers was support for 8-bit MIME
(Multipurpose Internet Mail Extensions) operation. This was pretty easy to do, because
| had been careful to keep the code 8-bit clean (that is, to not press the 8th bit, unused
in the ASCII character set, into service to carry information within the program). Not
because | anticipated the demand for this feature, but rather in obedience to another
rule:

15. When writing gateway software of any kind, take pains to disturb the data
stream as little as possibleand never throw away information unless the recipient
forces you to!

Had | not obeyed this rule, 8-bit MIME support would have been difficult and buggy.
As it was, all | had to do is read the MIME standard (RFC 1652) and add a trivial bit of
header-generation logic.

Some European users bugged me into adding an option to limit the number of messages
retrieved per session (so they can control costs from their expensive phone networks).
| resisted this for a long time, and I'm still not entirely happy about it. But if you're
writing for the world, you have to listen to your customersthis doesn’t change just
because they’re not paying you in money.

The Cathedral and the Bazaar Eric S. Raymond 20

148

149

150

151

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

A Few More Lessons from Fetchmail

Before we go back to general software-engineering issues, there are a couple more
specific lessons from the fetchmail experience to ponder. Nontechnical readers can
safely skip this section.

The rc (control) file syntax includes optional ‘noise’ keywords that are entirely ignored
by the parser. The English-like syntax they allow is considerably more readable than
the traditional terse keyword-value pairs you get when you strip them all out.

These started out as a late-night experiment when | noticed how much the rc file dec-
larations were beginning to resemble an imperative minilanguage. (This is also why |
changed the original popclient "server” keyword to "poll”).

It seemed to me that trying to make that imperative minilanguage more like English
might make it easier to use. Now, although I'm a convinced partisan of the "make it
a language” school of design as exemplified by Emacs and HTML and many database
engines, | am not normally a big fan of "English-like” syntaxes.

Traditionally programmers have tended to favor control syntaxes that are very precise
and compact and have no redundancy at all. This is a cultural legacy from when com-
puting resources were expensive, so parsing stages had to be as cheap and simple as
possible. English, with about 50% redundancy, looked like a very inappropriate model
then.

This is not my reason for normally avoiding English-like syntaxes; | mention it here only
to demolish it. With cheap cycles and core, terseness should not be an end in itself.
Nowadays it's more important for a language to be convenient for humans than to be
cheap for the computer.

There remain, however, good reasons to be wary. One is the complexity cost of the
parsing stageyou don’t want to raise that to the point where it’s a significant source
of bugs and user confusion in itself. Another is that trying to make a language syntax
English-like often demands that the "English” it speaks be bent seriously out of shape,
so much so that the superficial resemblance to natural language is as confusing as a
traditional syntax would have been. (You see this bad effect in a lot of so-called "fourth
generation” and commercial database-query languages.)

The fetchmail control syntax seems to avoid these problems because the language
domain is extremely restricted. It's nowhere near a general-purpose language; the
things it says simply are not very complicated, so there’s little potential for confusion
in moving mentally between a tiny subset of English and the actual control language.
| think there may be a broader lesson here:

16. When your language is nowhere near Turing-complete, syntactic sugar can be
your friend.

Anotherlesson is about security by obscurity. Some fetchmail users asked me to change
the software to store passwords encrypted in the rc file, so snoopers wouldn’t be able
to casually see them.

The Cathedral and the Bazaar Eric S. Raymond 21

152

153

154

155

156

157

158

159

160

161

162

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

| didn’t do it, because this doesn’t actually add protection. Anyone who’s acquired 13
permissions to read your rc file will be able to run fetchmail as you anywayand if it's
your password they’re after, they’d be able to rip the necessary decoder out of the
fetchmail code itself to get it.

All .fetchmailrc password encryption would have done is give a false sense of security 164
to people who don’t think very hard. The general rule here is:

17. A security system is only as secure as its secret. Beware of pseudo-secrets. 165

The Cathedral and the Bazaar Eric S. Raymond 22

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

Necessary Preconditions for the Bazaar Style

Early reviewers and test audiences for this essay consistently raised questions about
the preconditions for successful bazaar-style development, including both the qualifica-
tions of the project leader and the state of code at the time one goes public and starts
to try to build a co-developer community.

It's fairly clear that one cannot code from the ground up in bazaar style [IN]. One can
test, debug and improve in bazaar style, but it would be very hard to originate a project
in bazaar mode. Linus didn’t try it. | didn’t either. Your nascent developer community
needs to have something runnable and testable to play with.

When you start community-building, what you need to be able to present is a plausible
promise. Your program doesn’t have to work particularly well. It can be crude, buggy,
incomplete, and poorly documented. What it must not fail to do is (a) run, and (b)
convince potential co-developers that it can be evolved into something really neat in
the foreseeable future.

Linux and fetchmail both went public with strong, attractive basic designs. Many people
thinking about the bazaar model as | have presented it have correctly considered this
critical, then jumped from that to the conclusion that a high degree of design intuition
and cleverness in the project leader is indispensable.

But Linus got his design from Unix. | got mine initially from the ancestral popclient
(though it would later change a great deal, much more proportionately speaking than
has Linux). So does the leader/coordinator for a bazaar-style effort really have to have
exceptional design talent, or can he get by through leveraging the design talent of
others?

| think it is not critical that the coordinator be able to originate designs of exceptional
brilliance, but it is absolutely critical that the coordinator be able to recognize good
design ideas from others.

Both the Linux and fetchmail projects show evidence of this. Linus, while not (as previ-
ously discussed) a spectacularly original designer, has displayed a powerful knack for
recognizing good design and integrating it into the Linux kernel. And | have already de-
scribed how the single most powerful design idea in fetchmail (SMTP forwarding) came
from somebody else.

Early audiences of this essay complimented me by suggesting that | am prone to un-
dervalue design originality in bazaar projects because | have a lot of it myself, and
therefore take it for granted. There may be some truth to this; design (as opposed to
coding or debugging) is certainly my strongest skill.

But the problem with being clever and original in software design is that it gets to be
a habityou start reflexively making things cute and complicated when you should be
keeping them robust and simple. | have had projects crash on me because | made this
mistake, but | managed to avoid this with fetchmail.

So | believe the fetchmail project succeeded partly because | restrained my tendency to

The Cathedral and the Bazaar Eric S. Raymond 23

166

167

168

170

171

172

173

174

175

176

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

be clever; this argues (at least) against design originality being essential for successful
bazaar projects. And consider Linux. Suppose Linus Torvalds had been trying to pull off
fundamental innovations in operating system design during the development; does it
seem at all likely that the resulting kernel would be as stable and successful as what
we have?

A certain base level of design and coding skill is required, of course, but | expect al-
most anybody seriously thinking of launching a bazaar effort will already be above that
minimum. The open-source community’s internal market in reputation exerts subtle
pressure on people not to launch development efforts they’'re not competent to follow
through on. So far this seems to have worked pretty well.

There is another kind of skill not normally associated with software development which
| think is as important as design cleverness to bazaar projectsand it may be more
important. A bazaar project coordinator or leader must have good people and commu-
nications skills.

This should be obvious. In order to build a development community, you need to attract
people, interest them in what you're doing, and keep them happy about the amount of
work they're doing. Technical sizzle will go a long way towards accomplishing this, but
it’s far from the whole story. The personality you project matters, too.

It is not a coincidence that Linus is a nice guy who makes people like him and want
to help him. It’'s not a coincidence that I'm an energetic extrovert who enjoys working
a crowd and has some of the delivery and instincts of a stand-up comic. To make the
bazaar model work, it helps enormously if you have at least a little skill at charming
people.

The Cathedral and the Bazaar Eric S. Raymond 24

177

178

179

180

http://www.catb.org/esr/writings/homesteading/
http://www.catb.org/~esr/

The Cathedral and the Bazaar

The Social Context of Open-Source Software

Itis truly written: the best hacks start out as personal solutions to the author’s everyday
problems, and spread because the problem turns out to be typical for a large class of
users. This takes us back to the matter of rule 1, restated in a perhaps more useful
way:

18. To solve an interesting pr